

ML7661/ML7660 Batteryless SDK Host MCU Sample Software Manual (ML63Q2557 Sensor)

Issue Date: Feb. 13, 2025

Preface

This document is a manual for the sample software for the host microcontroller when controlling the Tx side of the ML766XRT2-EVK-001 using the ML63Q2557 reference board.

Notation

Classification	Notation	Description
Numeric value	XXh, XXH, 0xXX	Indicates a hexadecimal number.
Unit	word, W	1 word = 16 bits
	byte, B	1 byte = 8 bits
	nibble, N	1 nibble = 4 bits
	mega-, M	10 ⁶
	kilo-, K	2 ¹⁰ = 1024
	kilo-, k	10 ³ = 1000
	milli-, m	10-3
	micro-, µ	10-6
	nano-, n	10 ⁻⁹
	second, s (lower case)	second

Terms and Abbreviations			
Terms and Abbreviations	Description		
GUI	Graphical User Interface		
URI	Uniform Resource Identifier		
I2C	Inter Integrated Circuit		
SPI	Serial Peripheral Interface		
Tx / Poller	An NFC Forum Device in Poll Mode (Poll mode: The mode of an NFC Forum Device in which it sends Commands and receives Responses)		
Rx / Listener	An NFC Forum Device in Listen Mode (Listen mode: The mode of an NFC Forum Device in which it receives Commands and sends Responses)		
Short Packet Format	ROHM's original packet format		
ТЗТ	Role of a Listener when it has gone through a number of States. In this mode, the Listener supports the execution of Type 3 Tag commands to read or write NDEF messages.		

Table of Contents

Prefac	cei			
Notati	ionii			
Table	of Contentsiii			
1.	Overview1			
1.1.	Operation Environment			
2.	System Configuration2			
2.1.	Board Connection			
3.	Sample Software4			
3.1.	Software Structure			
3.2.	File Structure4			
3.3.	Parameters6			
4.	How to Operate the Sample Software			
4.1.	Operation Verification Procedure			
5.	Supplementary Information			
6.	. Revision History10			

1. Overview

This document is a manual for the sample software for the host microcontroller when controlling the Tx side of the ML766XRT2-EVK-001 using the ML63Q2557 reference board.

The host microcontroller configures various settings for the Tx side to control Batteryless communication operations. Additionally, it acquires data from the strain sensor (STREAL SR300) by GLOSEL Co., which is connected to the Rx side, via the Tx side, and outputs the results through UART."

1.1. Operation Environment

Please prepare the following to run the reference software.

Name	substance
Windows PC	Windows 10 (1903 or later) recommended
Software Development Environment	MDK Arm $\mu\text{V}\textsc{ision}$ 5.33 recommended. The sample software can also be checked in the evaluation version.
Debug Adapter	It is used to debug software and write programs to Flash. J-Link is recommended.
Tx Host Board	ML63Q2557 Reference Board (ML63Q2557TB64)
USB to UART conversion module	By connecting the ML63Q2557 reference board to a PC via a USB to UART conversion module, you can display the acquired sensor data.
ML766XRT2-EVK-001	Rotating Reference Kit for ML7661/ML7660

ML766XRT2-EVK-001

2. System Configuration

The system configuration is shown below. The ML766XRT2-EVK-001 consists of the ML7661-EVK-002 reference board and the ML7660-EVK-002 reference board.

This sample software operates as a Tx Host. The Tx Host board uses the ML63Q2557 reference board.

By developing the Event Called Function for the power transmission side (Tx side) Host and the power receiving side (Rx side), it is possible to use any peripheral device (sensors).

The sensor data is acquired by the Rx via SPI. The Tx communicates with the Rx to obtain the sensor data. The Tx Host controls the Tx and receives the sensor data acquired by the Rx.

For the Host I/F between the Tx Host and Tx, please refer to the NFC Reference Software Host Command Manual.

The Host I/F uses SPI. Please connect to the SPI-related pins of the ML7661. The ML63Q2557 side is the controller device, and the ML7661 side is the peripheral device.

Please connect the UART output of the ML63Q2557 to the terminal software on your PC. It will display the sensor information obtained from the ML766x.

2.1. Board Connection

CN3 Pin No.	Pin Name	Function Pin Name	Function	Connection
1	VDD	VDD	VDD pin	Supply 5V
2	VSS	VSS	VSS pin	Connect to GND

CN2 Pin No.	Pin Name	Function Pin Name	Function	Connection
22	P63	SSNF1	SIOF1 select input/output	ML7661-EVK-002:FTDI-F1(Pin8 SCS_S)
23	P62	SINF1	SIOF1 data input	ML7661-EVK-002:FTDI-F1(Pin7 SDO_S)
24	P61	SOUTF1	SIOF1 data output	ML7661-EVK-002:FTDI-F1(Pin4 SDA/SDI)
25	P60	SCKF1	SIOF1 clock output	ML7661-EVK-002:FTDI-F1(Pin5 SCK/SCLK)
32	P21	TXDF0	UARTF0 Data output	Connect to PC via USB to UART conversion module
33 or 34	VSS	VSS	VSS pin	Connect to GND

3. Sample Software

3.1. Software Structure

3.2. File Structure

The file structure of this sample program is described below.

Folder / File Names	Description	
ML63Q2500Sample		
SourceCode		
samples		
BatteryLess		
SensorSR300Demo	Sample program folder using STREAL SR300	
main.c	Main routine files	
main.h		
app_batteryless_sensor.c	Sensor Control files	
app_batteryless_sensor.h		
hostcmd.c	Host Command files	
hostcmd.h		
hostif.c	Host Interface files	
hostif.h		
hostif_hal.c	Hast Interface hardware access files	
hostif_hal.h		
timer_hal.c	Timer access files	
timer_hal.h		
uart_hal.c		
uart_hal.h		
codeoption.c		
codeoption.h	Configuration files	
codeoption_config.h		
irq_SensorSR300Demo.c	Interrupt function source file	

ML7661/ML7660 Batteryless SDK Host MCU Sample Software Manual (ML63Q2557 Sensor)

	JLinkSettings.ini	Setting file		
	SensorSR300Demo.uvoptx	Project option file		
	SensorSR300Demo.uvprojx	Project file		
	RTE	RTE folder		
dri	iver	Peripheral driver folder		
	src	Folder storing source files for each peripheral driver		
	irq.c	Source file of IRQ driver		
	timer0_1.c	Source file of TIMER0 and TIMER1 drivers		
	wdt.c	Source file of WDT driver		
	ssiof1.c	Source file of SSIOF1 driver		
	uartf0.c	Source file of UARTF0 driver		
	inc	Folder storing header files for each peripheral driver		
	rdwr_reg.h	Folder storing header files for each peripheral driver		
	mcu.h	Header file of target device		
	clock.h	API definition header file of Clock driver		
	irq.h	API definition header file of IRQ driver		
	timer0_1.h	API definition header file of TIMER0 and TIMER1 drivers		
	timer_common.h	Common header file of Timer driver		
	wdt.h	API definition header file of WDT driver		
	ssiof1.h	API definition header file of SSIOF1 driver		
	ssiof_common.h	Common header file of SSIOF driver		
	uartf0.h	API definition header file of UARTF0 driver		
	uartf_common.h	Common header file of UARTF driver		
uti	ility	Source code of utility functions related to reference board control		
	board			
	smpl_common.c	Common process for sample program		
	smpl_common.h			
	smpl_common_led.c			
	smpl_common_led.h			

3.3. Parameters

File Name: app_batteryless_sensor.h

Definition	Description			
SETTING_PRM_COMMHIGH	RF field (modulation)	upper leve	el setting during communication.	
	Default	60		
	Range 0 to 255			
	Used as PRM1 in the	Batteryles	s Setting Command	
SETTING_PRM_COMMLOW	RF field (modulation)	lower leve	I setting during communication.	
	Default	40		
	Range	0 to 255		
	Used as PRM2 in the	Batteryles	ss Setting Command	
SETTING_PRM_CHARGEHIGH	RF field (modulation)	lower leve	l setting during power supply.	
	Default	60		
	Range	0 to 255		
	Used as PRM3 in the	e Batteryles	s Setting Command	
SETTING_PRM_COMMFEED	RF field (feed size) s	etting durir	g communication	
	Default	5		
	Range	0 to 63		
	Used as PRM4 in the	Batteryles	ss Setting Command	
SETTING_PRM_CHARGEFEED	RF field (feed size) s	etting durir	g power supply	
	Default	5		
	Range	0 to 63		
	Used as PRM5 in the	Batteryles	s Setting Command	
CHØSTRAIN	Control for acquiring	strain sens	or value on Channel 0	
	0 Disabled			
	1 Enabled (Defa	ault)		
CHØTEMPERATURE	Control for acquiring	temperatu	e sensor value on Channel 0	
	0 Disabled			
	1 Enabled (Defa	ault)		
CH1STRAIN	Control for acquiring	strain sens	or value on Channel 1	
	0 Disabled			
	1 Enabled (Defa	ault)		
CH1TEMPERATURE	Control for acquiring temperature sensor value on Channel 1			
	0 Disabled			
	1 Enabled (Defa	ault)		
PACKET_FORMAT	Data Format Selection	on	4	
	T3T_FORMAT		Select T3T Format]
	SHORT_PACKET_	FORMAT	Select Short Packet Format (Default)	

ML7661/ML7660 Batteryless SDK Host MCU Sample Software Manual (ML63Q2557 Sensor)

LATENCY_TIME	Latency Time Control				
	0 Disabled				
	1 Enabled (De	fault)			
DATA_BYTE_NUM	Number of Bytes of	Received Data			
	Automatically calcu	ated using the following formula:			
	(LATENCY_TIME * 4 + (CH0STRAIN + CH0TEMPERATURE + CH1STR CH1TEMPERATURE) * 2)				
	Default	12			
	Range	at Type 3 Tag Communication: 1 to 80 at Short Packet Format Communication: 1 to	253		
	Unit	Bytes			
	Used as PRM2 in the	e Batteryless Execution Command			
CYCLE	Data Acquisition Cy	cle Control			
	Specify the Interval	for Issuing the Batteryless Data Acquisition Com	nmand		
	Default	0			
	Range	0 to 65535			
	Unit	Milliseconds			
	Used as PRM4 and PRM5 in the Batteryless Execution Command				
COMM_TIMEOUT	Timeout Duration D	uring Communication			
	Default	10			
	Range	0 to 65535			
	Unit	Milliseconds			
	Used as PRM6 and	PRM7 in the Batteryless Execution Command			
WRITE_T0_APP_TIMEOUT Host Command Timeout Duration (Duri		eout Duration (During Application Data Write Co	ommand)		
	Default	1			
	Range	0 to 255			
	Unit	Seconds			

4. How to Operate the Sample Software

The sample program includes project files for MDK-ARM µVision, so you can easily verify operation and modify the program.

- 4.1. Operation Verification Procedure
- Step-1. Install the MDK-ARM development environment
- Step-2. Launch the $\mu\text{V}\textsc{ision}$ project file of this sample program
- Step-3. Write the program to the ML63Q2557 reference board

The program will light up the LED (P50) after startup. Then, it will send commands to the Tx side, configure the settings, and start Batteryless communication. It will continuously acquire data and output the results via UART.

By using terminal software, you can display the acquired sensor values. Below is an example of the terminal software settings.

Tera Term: Serial port se	etup and cor	nection		×
Port: Speed:	COM28	~	New open	
Data:	8 bit	~	Cancel	
Stop bits:	none 1 bit	~	Help	
Flow control:	none	\sim		
Transmi 0	t delay msec/char	0	msec/line	

Here is an example of how the acquired data can be displayed:

If LATENCY_TIME is defined as 0 (Disabled), the timestamp will not be output.

Only the sensor values defined as 1 (Enabled) will be output: CH0STRAIN CH0TEMPERATURE CH1STRAIN CH1TEMPERATURE、

5. Supplementary Information

When using the SDK with sensors, the parameter for the Batteryless execution command can only be set to 'synchronous' mode.

When using the SDK with sensors, it is recommended to use the Short Packet Format for communication when acquiring sensor data.

6. Revision History

		Page		
No.	Date	Previous Edition	Current Edition	Descriptions
1	Feb 13, 2025	-	-	First edition issued

Notice

Precaution on using ROHM Products

- 1) When using ROHM Products, refer to the latest product information and ensure that usage conditions (absolute maximum ratings^{*1}, recommended operating conditions, etc.) are within the ranges specified. ROHM disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of ROHM Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of ROHM Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.
 - *1: Absolute maximum ratings: a limit value that must not be exceeded even momentarily.
- 2) The Products specified in this document are not designed to be radiation tolerant.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. ROHM disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third party with respect to ROHM Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore, ROHM shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) ROHM intends our Products to be used in a way indicated in this document. Please be sure to contact a ROHM sales office if you consider the use of our Products in different way from original use indicated in this document. For use of our Products in medical systems, please be sure to contact a ROHM representative and must obtain written agreement. Do not use our Products in applications which may directly cause injuries to human life, and which require extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc. ROHM disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us without our prior written consent.
- 6) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 7) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 8) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or ROHM's Products.
- 9) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

(Note) "ROHM" as used in this document means ROHM Co., Ltd.

ML7661/ML7660 Batteryless SDK Host MCU Sample Software Manual (ML63Q2557 Sensor)

Other Precaution

- 1) All information contained in this document is subject to change for the purpose of improvement, etc. without any prior notice. Before purchasing or using ROHM Products, please confirm the latest information with a ROHM sales office.
- 2) ROHM has used reasonable care to ensure the accuracy of the information contained in this document, however, ROHM shall have no responsibility for any damages, expenses or losses arising from inaccuracy or errors of such information.

TSZ72037.01.001