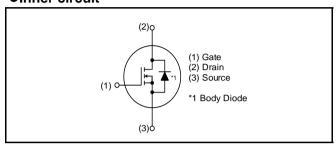


SCT4036KEHR

Automotive Grade N-channel SiC power MOSFET

Datasheet

V_{DSS}	1200V
R _{DS(on)} (Typ.)	36mΩ
I _D *1	43A
P_D	176W


Outline

Features

- 1) Qualified to AEC-Q101
- 2) Low on-resistance
- 3) Fast switching speed
- 4) Fast reverse recovery
- 5) Easy to parallel
- 6) Simple to drive
- 7) Pb-free lead plating; RoHS compliant

•Inner circuit

Application

- Automobile
- Switch mode power supplies

Packaging specifications

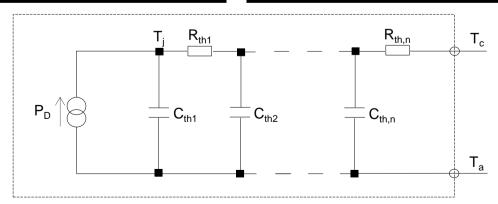
	Packing	Tube
	Reel size (mm)	-
Typo	Tape width (mm)	-
Туре	Basic ordering unit (pcs)	30
	Taping code	C11
	Marking	SCT4036KE

● **Absolute maximum ratings** (T_{vi} = 25°C unless otherwise specified.)

Parameter		Symbol	Value	Unit	
Drain - source voltage		V_{DSS}	1200	V	
Continuous drain	\/ - \/	$T_c = 25^{\circ}C$, , *1	43	А
and source current	$V_{GS} = V_{GS_on}$	T _c = 100°C	Ι _D , Ι _S *1	30	А
Pulsed drain current	$V_{GS} = V_{GS_on}$	$T_c = 25^{\circ}C$	I _{D,pulse} *2	84	А
Body diode pulsed forward	ard current	$T_c = 25^{\circ}C$	I _{S,pulse} *1,*3	43	А
Body diode surge forward current $V_{GS} = 0$		$V_{GS} = 0 V$	I _{S,pulse} *1,*4	84	А
Gate - source voltage (DC)			V_{GSS_DC}	-4 to +21	V
Gate - source surge voltage (t _{surge} < 300ns)		ns)	V _{GSS_surge} *5	-4 to +23	V
Recommended turn-on gate - source drive voltage		ive voltage	$V_{GS_on}^{*6}$	+15 to +18	V
Recommended turn-off gate - source drive voltage		V_{GS_off}	0	V	
Virtual junction temperature		T_{vj}	175	°C	
Range of storage temperature		T_{stg}	-40 to +175	°C	

ullet Electrical characteristics (T_{vj} = 25°C unless otherwise specified)

Doromotor	Cymbol	Conditions	litions		Values		
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Drain - Source breakdown voltage	W	$V_{GS} = 0 \text{ V}, I_D = 9.2 \text{mA}$				V	
	V (BR)DSS	$T_{vj} = 25^{\circ}C$	1200	-	-	V	
		$V_{GS} = 0 \text{ V}, V_{DS} = 1200 \text{V}$					
Zero Gate voltage Drain current	I _{DSS}	$T_{vj} = 25^{\circ}C$	-	1	80	μA	
Diam current		T _{vj} = 150°C	-	10	-		
Gate - Source leakage current	I _{GSS+}	$V_{GS} = +21V , V_{DS} = 0V$	-	-	100	nA	
Gate - Source leakage current	I _{GSS-}	$V_{GS} = -4V$, $V_{DS} = 0V$	-	-	-100	nA	
Gate threshold voltage	$V_{GS(th)}^{*7}$	$V_{DS} = 10V, I_{D} = 11.1 \text{mA}$	2.8	-	4.8	V	
		$V_{GS} = 18V, I_{D} = 21A$					
Static Drain - Source on - state resistance	R _{DS(on)} *8	$T_{vj} = 25^{\circ}C$	-	36	47	mΩ	
on state resistance		T _{vj} = 150°C	-	72	-		
Gate input resistance	R_{G}	f = 1MHz, open drain	-	1	-	Ω	


●Thermal resistance

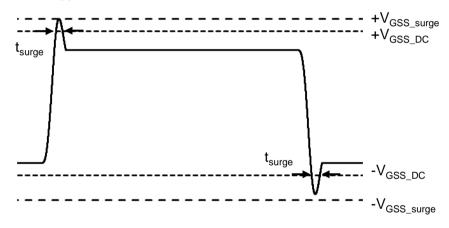
Parameter	Symbol	Values			Unit
		Min.	Тур.	Max.	Offic
Thermal resistance, junction - case	R _{thJC} *9	-	0.65	0.85	K/W

●Typical Transient Thermal Characteristics

Symbol	Value	Unit
R _{th1}	4.9 × 10 ⁻²	
R _{th2}	3.0 ×10 ⁻¹	K/W
R _{th3}	3.0 ×10 ⁻¹	

Symbol	Value	Unit
C _{th1}	8.7 ×10 ⁻⁴	
C_{th2}	4.0 × 10 ⁻³	Ws/K
C _{th3}	5.2 ×10 ⁻²	

ullet Electrical characteristics (T_{vj} = 25°C unless otherwise specified)


Dovomotov	Cymada al	Conditions		Values		
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transconductance	g _{fs} *8	$V_{DS} = 10V, I_{D} = 21A$	-	11	-	S
Input capacitance	C _{iss}	V _{GS} = 0V	-	2335	-	
Output capacitance	C _{oss}	V _{DS} = 800V	-	70	-	pF
Reverse transfer capacitance	C _{rss}	f = 1MHz	-	5	-	,
Effective output capacitance, energy related	C _{o(er)}	$V_{GS} = 0V$ $V_{DS} = 0V \text{ to } 800V$	-	84	-	pF
Total Gate charge	Q _g *8	$V_{DS} = 800V$ $I_{D} = 21A$	-	91	-	
Gate - Source charge	Q _{gs} *8	V _{GS} = 18V	-	20	-	nC
Gate - Drain charge	Q _{gd} *8	See Fig. 1-1, 1-2.	ı	24	-	
Turn - on delay time	t _{d(on)} *8	$V_{DS} = 800V$ $I_{D} = 21A$	ı	10	•	
Rise time	t _r *8	$V_{GS} = +18V / 0V$	ı	28	-	ns
Turn - off delay time	t _{d(off)} *8	$R_G = 3.3\Omega$, L = 250µH E_{on} includes diode	-	31	-	113
Fall time	t _f *8	reverse recovery $L_{\sigma} = 50$ nH, $C_{\sigma} = 10$ pF	1	12	-	
Turn - on switching loss	E _{on} *8	See Fig. 2-1, 2-2, 2-3.	-	480	-	μJ
Turn - off switching loss	E _{off} *8		ı	57	-	μο
$V_{GS(on)} = +15V$ Short-circuit	- t _{sc} *9	$V_{DS} \le 800V$ $V_{DS,peak} \le 1200V$	-	4.5	-	μs
withstand time $V_{GS(on)} = +18V$		$T_{vj(start)} = 25^{\circ}C$ $R_G = 2.2\Omega$	-	4.0	-	μs

●Body diode electrical characteristics (Source-Drain) (T_{vi} = 25°C unless otherwise specified)

Darameter	Cumbal Conditions	Values			l lm:4	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward voltage	V _{SD} *8	$V_{GS} = 0V, I_{S} = 21A$	ı	3.3	ı	V
Reverse recovery time	t _{rr} *8	$I_F = 21A$ $V_R = 800V$	ı	20	ı	ns
Reverse recovery charge	Q _{rr} *8	di/dt = 2400A/µs	ı	130	ı	nC
Peak reverse recovery current	I _{rrm} *8	$L_{\sigma} = 50$ nH, $C_{\sigma} = 10$ pF See Fig. 3-1, 3-2.	-	12	ı	А

^{*1} Limited by maximum T_{vj} and for Max. R_{thJC} .

*5 Example of acceptable V_{GS} waveform

- *6 Please be advised not to use SiC-MOSFETs with V_{GS} below 10V as doing so may cause thermal runaway.
- *7 Tested after applying $V_{GS} = 21V$ for 100ms.
- *8 Pulsed
- *9 The value is based on TO-247 package. Single Pulsed.
- *10 Measured conformable to JESD51-14.

See the application note "rthjc_measurement_and_usage_an-e.pdf". Link

URL: https://fscdn.rohm.com/en/products/databook/applinote/discrete/common/rthjc_measurement_and_usage_an-e.pdf

^{*2} Pulse width and duty cycle are limited by $T_{v_j,max}$.

^{*3} Only for body-diode, Repititive pulse, PW ≤ 1.5µs, Duty cycle ≤ 5%

^{*4} When used as a protective function, PW ≤ 10µs

Fig.1 Power Dissipation Derating Curve

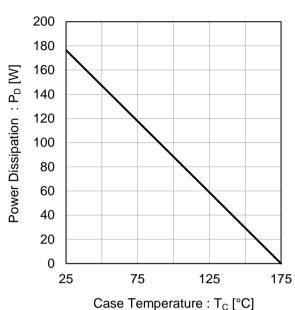


Fig.2 Maximum Safe Operating Area

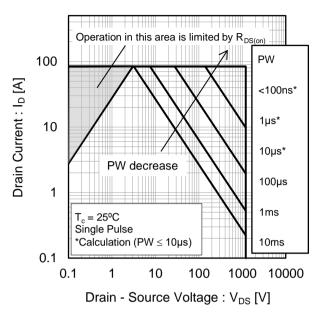
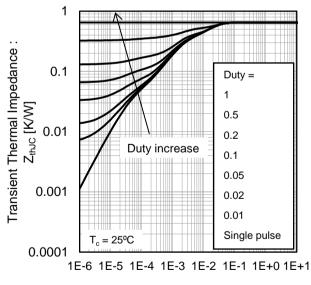
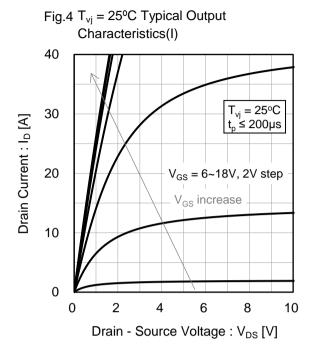
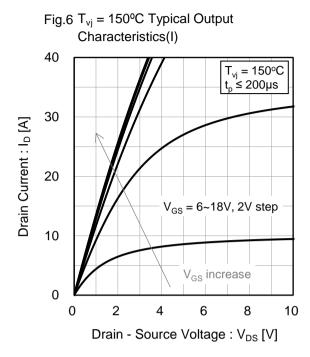
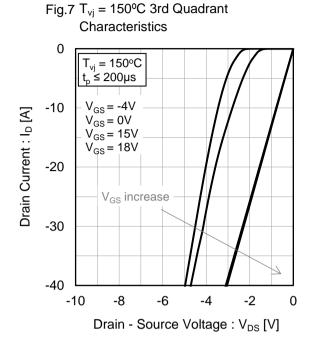




Fig.3 Typical Transient Thermal Impedance vs. Pulse Width




Pulse Width: PW [s]

Drain - Source Voltage : V_{DS} [V]

Fig.5 T_{vi} = 25°C 3rd Quadrant Characteristics

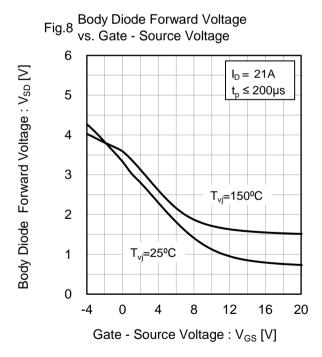


Fig.9 Typical Transfer Characteristics (I)

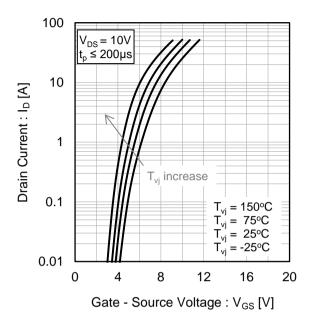


Fig.10 Typical Transfer Characteristics (II)

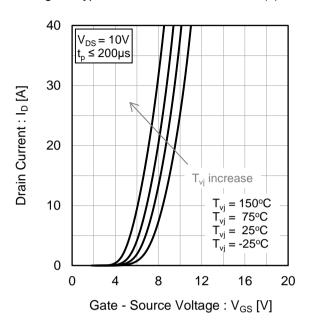


Fig.11 Gate Threshold Voltage vs. Virtual Junction Temperature

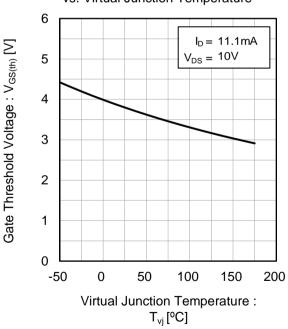
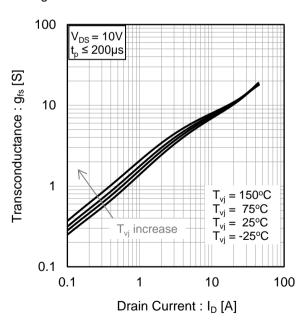
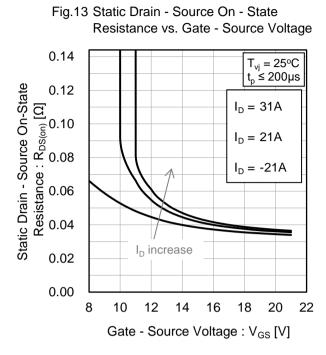
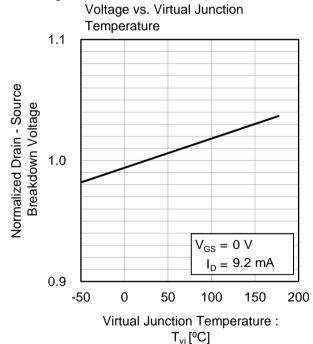




Fig.12 Transconductance vs. Drain Current



Resistance vs. Virtual Junction Temperature 0.14 $V_{GS} = 18V$ $t_p \le 200 \mu s$ Static Drain - Source On-State 0.12 $I_{D} = 31A$ = 21A= -21AI_D increase 0.02 0.00 0 -50 50 100 150 200 Virtual Junction Temperature: T_{vi} [°C]

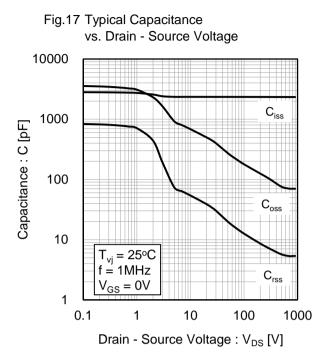

Fig.14 Static Drain - Source On - State

Fig.15 Static Drain - Source On - State Resistance vs. Drain Current = 150°C = 125°C Static Drain - Source On-State $T_{vj} = 75^{\circ}C$ = 25°C Resistance: R_{DS(on)} [Ω] = -25°C 0.1 T_{vi} increase 0.01 $V_{GS} = 18V$ $t_p \le 200 \mu s$ 0.001 10 100 Drain Current: I_D [A]

ROHM

Fig.16 Normalized Drain - Source Breakdown

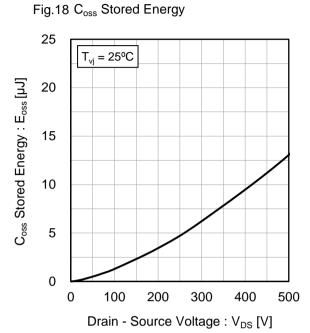


Fig.19 Dynamic Input Characteristics

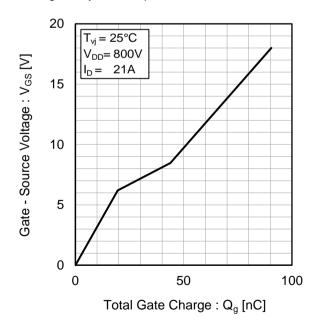


Fig.20 Typical Switching Time vs. External Gate Resistance 120 $T_{vi} = 25^{\circ}C$ $I_D = 21A$ 100 V_{DD}= 800V $t_{d(off)}$ $V_{GS} = +18V/0V$ Switching Time : t [ns] 80 $L = 250 \mu H$ 60 $t_{d(on)}$ 40 $t_{\rm f}$ 20 0 5 10 15 20 External Gate Resistance : $R_G[\Omega]$

Fig.21 Typical Switching Loss

Fig.22 Typical Switching Loss vs. Drain Current 1500 $T_{vj} =$ 25°C V_{DD}= 800V $V_{GS} = +18V/0V$ $R_G = 3.3\Omega$ Switching Loss: E [µJ] 250µH 1000 E_{on} 500 0 0 5 15 20 25 35 Drain Current: I_D [A]

vs. External Gate Resistance 1500 $T_{vj} = 25^{\circ}C$ $I_D = 21A$ $V_{DD} = 800V$ $V_{GS} = +18V/0V$ Switching Loss: E [µJ] L = 250µH 1000 Eon 500 $\mathsf{E}_{\mathsf{off}}$ 0 5 0 10 15 20 External Gate Resistance : $R_G[\Omega]$

Fig.23 Typical Switching Loss

Measurement circuits and waveforms

Fig.1-1 Gate Charge Measurement Circuit

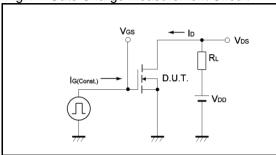


Fig.2-1 Switching Characteristics Measurement Circuit

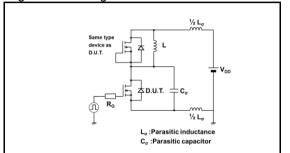


Fig.2-3 Waveforms for Switching Energy Loss

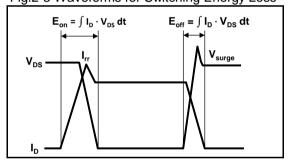


Fig.3-1 Reverse Recovery Time Measurement Circuit

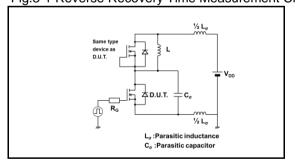
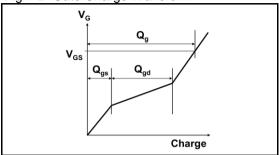
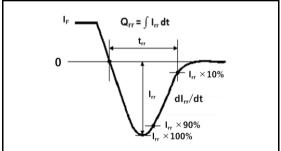


Fig.1-2 Gate Charge Waveform

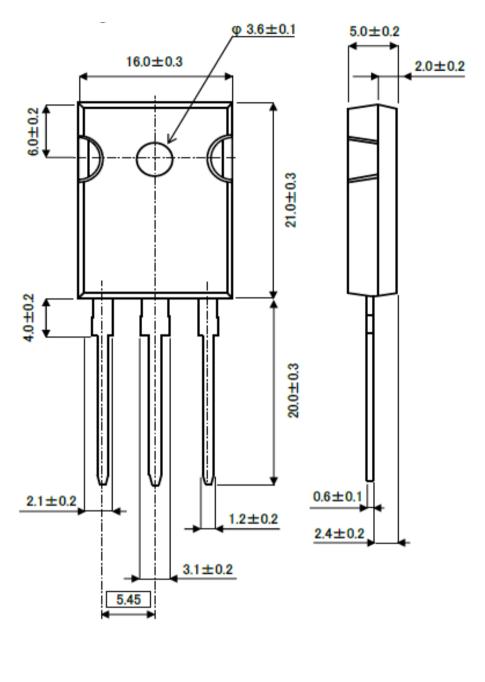
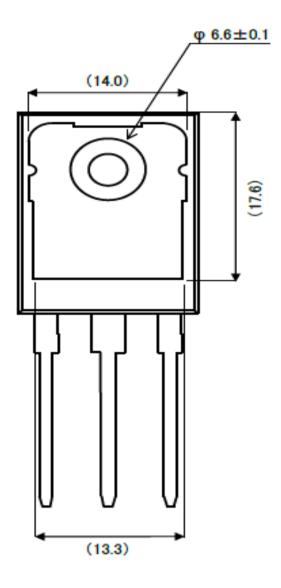
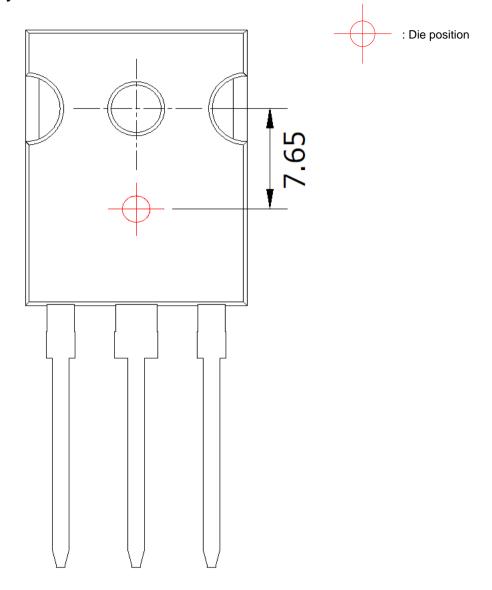

Fig.2-2 Waveforms for Switching Time

Fig.3-2 Reverse Recovery Waveform



●Package Dimensions



Unit: mm

Unit: mm

●Die Bonding Layout

- •Front view of the packaging.
- •Dimensions are design values.
- ·If the heat sink is to be installed, it should be in contact with the die bonding point.

Unit: mm

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications.
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.

 Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

General Precaution

- 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE Rev.001