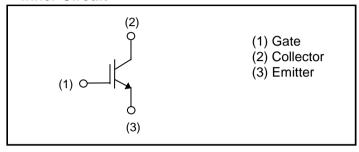


RGS80TSX2

1200V 40A Field Stop Trench IGBT

V _{CES}	1200V
I _{C (100°C)}	40A
V _{CE(sat) (Typ.)}	1.7V
P_D	555W


Outline

Features

- 1) Low Collector Emitter Saturation Voltage
- 2) Short Circuit Withstand Time 10µs
- 3) Pb free Lead Plating; RoHS Compliant

●Inner Circuit

Packaging Specifications

or dokaging opcompations					
	Packaging	Tube			
	Reel Size (mm)	-			
Type	Tape Width (mm)	-			
Туре	Basic Ordering Unit (pcs)	450			
	Packing Code	C11			
	Marking	RGS80TSX2			
	-				

Application

PFC

UPS

ΙH

Power Conditioner

● Absolute Maximum Ratings (at T_C = 25°C unless otherwise specified)

Parameter		Symbol	Value	Unit
Collector - Emitter Voltage		V _{CES}	1200	V
Gate - Emitter Voltage		V_{GES}	±30	V
Collector Current	T _C = 25°C	I _C	80	А
	T _C = 100°C	I _C	40	А
Pulsed Collector Current		I _{CP} *1	120	Α
Dawar Dissipation	T _C = 25°C	P _D	555	W
Power Dissipation	T _C = 100°C	P _D	277	W
Operating Junction Temperatu	re	T _j	-40 to +175	°C
Storage Temperature		T _{stg}	-55 to +175	°C

^{*1} Pulse width limited by T_{imax.}

●Thermal Resistance

Parameter	Symbol	Values			Unit
raidilletei		Min.	Тур.	Max.	Offic
Thermal Resistance IGBT Junction - Case	$R_{\theta(j-c)}$	-	-	0.27	°C/W

●IGBT Electrical Characteristics (at T_j = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Values			Linit
			Min.	Тур.	Max.	Unit
Collector - Emitter Breakdown Voltage	BV _{CES}	$I_{C} = 10 \mu A, V_{GE} = 0 V$	1200	-	-	V
		$V_{CE} = 1200V, V_{GE} = 0V,$				
Collector Cut - off Current	I _{CES}	$T_{j} = 25^{\circ}C$ $Tj = 175^{\circ}C^{*2}$	-	-	10	μΑ
		Tj = 175°C ^{*2}	-	3	-	mA
Gate - Emitter Leakage Current	I _{GES}	$V_{GE} = \pm 30V, V_{CE} = 0V$	-	-	±500	nA
Gate - Emitter Threshold Voltage	$V_{GE(th)}$	$V_{CE} = 5V, I_{C} = 6.1mA$	5.0	6.0	7.0	V
		$I_C = 40A, V_{GE} = 15V,$				
Collector - Emitter Saturation Voltage	V _{CE(sat)}	T _j = 25°C	-	1.70	2.10	V
		T _j = 175°C	-	2.20	-	V

●IGBT Electrical Characteristics (at T_j = 25°C unless otherwise specified)

Davamatan	Symbol	Conditions		l locit		
Parameter			Min.	Тур.	Max.	Unit
Input Capacitance	C _{ies}	$V_{CE} = 30V$,	-	2820	-	pF
Output Capacitance	C _{oes}	$V_{GE} = 0V$,	-	161	-	
Reverse transfer Capacitance	C _{res}	f = 1MHz	-	25	-	
Total Gate Charge	Q_g	V _{CE} = 500V,	-	104	-	
Gate - Emitter Charge	Q_ge	$I_C = 40A$,	ı	25	-	nC
Gate - Collector Charge	Q_{gc}	V _{GE} = 15V	-	42	-	
Turn - on Delay Time	t _{d(on)}		-	49	-	
Rise Time	t _r	$I_C = 40A, V_{CC} = 600V,$ $V_{GE} = 15V, R_G = 10\Omega,$	-	27	-	no
Turn - off Delay Time	t _{d(off)}	$T_i = 25^{\circ}C$	-	199	-	ns
Fall Time	t _f	Inductive Load	-	227	-	
Turn - on Switching Loss	E _{on}	*E _{on} include diode reverse recovery	-	3.00	-	mJ
Turn - off Switching Loss	E _{off}		-	3.10	-	
Turn - on Delay Time	t _{d(on)}		-	49	-	
Rise Time	t _r	$I_C = 40A, V_{CC} = 600V,$ $V_{GE} = 15V, R_G = 10\Omega,$	-	40	-	ns
Turn - off Delay Time	t _{d(off)}	$T_i = 175^{\circ}C$	-	258	-	
Fall Time	t _f	Inductive Load	-	371	-	
Turn - on Switching Loss	E _{on}	*E _{on} include diode reverse recovery	-	3.80	-	mJ
Turn - off Switching Loss	E _{off}	,	-	4.50	-	IIIJ
Reverse Bias Safe Operating Area	RBSOA	$I_C = 120A$, $V_{CC} = 1050V$, $V_P = 1200V$, $V_{GE} = 15V$, $R_G = 50\Omega$, $T_j = 175^{\circ}C$	FULL SQUARE		-	
Short Circuit Withstand Time	t _{sc}	$V_{CC} \le 600V$, $V_{GE} = 15V$, $T_j = 25^{\circ}C$	10	-	-	μs
Short Circuit Withstand Time	t _{sc} *2	$V_{CC} \le 600V$, $V_{GE} = 15V$, $T_j = 150$ °C	8	-	-	μs

^{*2} Design assurance without measurement

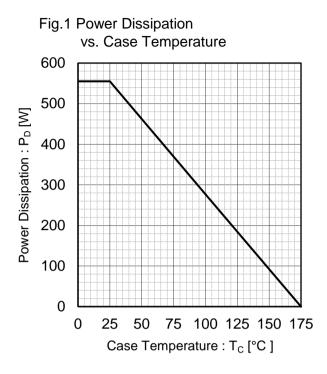


Fig.2 Collector Current vs. Case Temperature 100 80 Collector Current : Ic [A] 60 40 20 T_i ≤ 175°C , G_E ≥ 15V 0 25 75 100 125 150 175 0 Case Temperature : T_C [°C]

Fig.3 Forward Bias Safe Operating Area 1000 10µs 100 Collector Current : I_C [A] 10 100µs 1 0.1 T_C = 25°C Single Pulse 0.01 10 100 1000 10000 Collector To Emitter Voltage: V_{CE} [V]

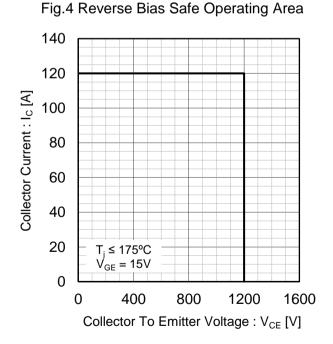


Fig.5 Typical Output Characteristics

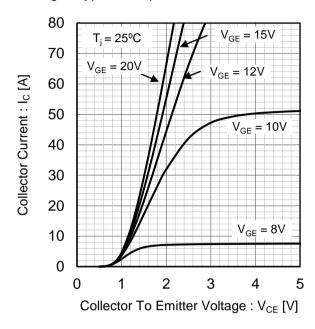


Fig.6 Typical Output Characteristics

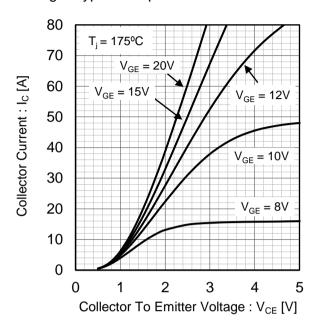


Fig.7 Typical Transfer Characteristics

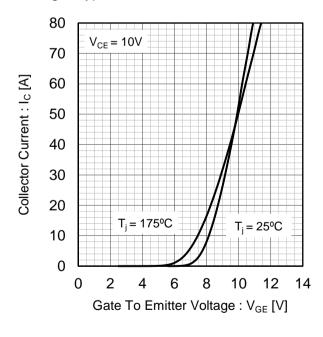
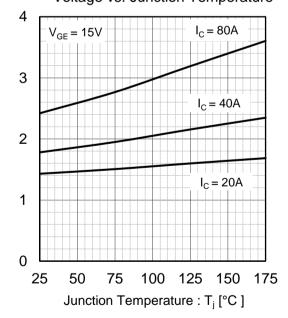



Fig.8 Typical Collector To Emitter Saturation Voltage vs. Junction Temperature

5/9

Collector To Emitter Saturation Voltage

: $V_{CE(sat)}[V]$

Fig.9 Typical Collector To Emitter Saturation Voltage vs. Gate To Emitter Voltage

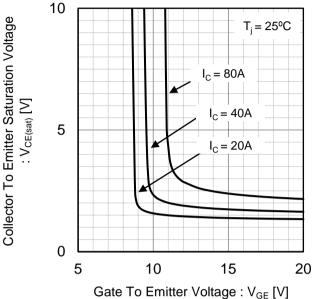


Fig.10 Typical Collector To Emitter Saturation Voltage vs. Gate To Emitter Voltage

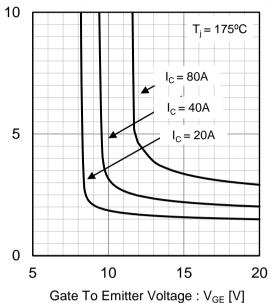


Fig.11 Typical Switching Time vs. Collector Current

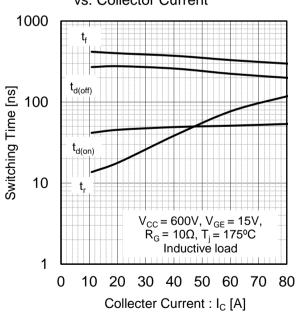


Fig.12 Typical Switching Time vs. Gate Resistance

Collector To Emitter Saturation Voltage

: V_{CE(sat)} [V]

Fig.13 Typical Switching Energy Losses vs. Collector Current

100 E_{off} $V_{cc} = 600V, V_{gE} = 15V, R_{g} = 10\Omega, T_{j} = 175^{\circ}C$ Inductive load

0.1

0 10 20 30 40 50 60 70 80

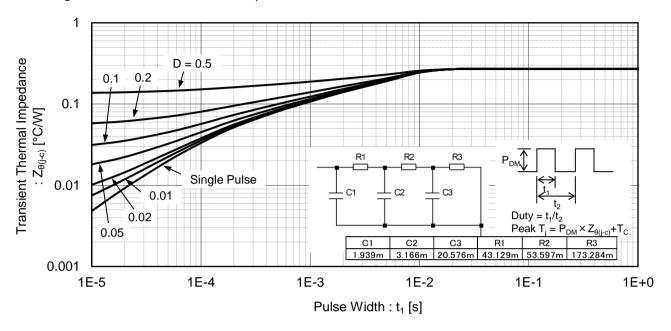

Collector Current : I_{c} [A]

Fig.14 Typical Switching Energy Losses vs. Gate Resistance 100 Switching Energy Losses [mJ] 10 $\mathsf{E}_{\mathsf{off}}$ Eon 1 V_{CC} = 600V, I_{C} = 40A, V_{GE} = 15V, T_{j} = 175°C Inductive load 0.1 0 10 20 30 40 50 Gate Resistance : $R_G[\Omega]$

Fig.15 Typical Capacitance vs. Collector To Emitter Voltage 10000 Cies 1000 Capacitance [pF] C_{oes} 100 10 $\mathsf{C}_{\mathsf{res}}$ f = 1MHz $V_{GE} = 0V$ T_i = 25°C 1 0.01 0.1 1 10 100 Collector To Emitter Voltage: V_{CE} [V]

Fig.16 Typical Gate Charge 15 Gate To Emitter Voltage: VGE [V] $V_{CE} = 300V$ 10 $V_{CE} = 500V$ 5 $I_C = 40A$ T_i = 25°C 0 0 30 60 90 120 Gate Charge : Qg [nQ]

Fig.17 IGBT Transient Thermal Impedance

www.rohm.com

ROHM

●Inductive Load Switching Circuit and Waveform

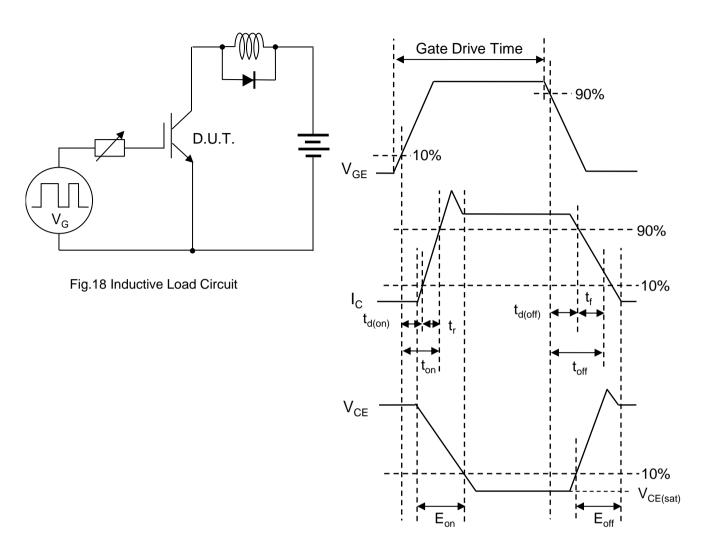


Fig.19 Inductive Load Waveform

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications.
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.

 Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/