

Switching Regulator Series

Buck Converter with Integrated FET BD9E105FP4-Z EVK

BD9E105FP4-EVK-001 (Input 12V to 24V \rightarrow Output 5V, 1A)

Introduction

This user's guide provides the necessary steps to operate the EVK of ROHM's BD9E105FP4-Z 1-channel Buck DC/DC converter. This includes the external parts, operating procedures, and application data.

Description

This EVK has been developed for ROHM's synchronous buck DC/DC converter customers evaluating BD9E105FP4-Z that outputs 5V from 12V to 24V input voltage range. The output range is from VIN x 0.1 (more than 0.7V) to VIN x 0.8 and it can be designed as 0.596V x (R2+R3) / R3 by external resistors. The operating frequency is fixed at 500kHz. The current mode control DC/DC converter provides high-speed transient response performance. Additional protection functions include a built-in soft start function to prevent inrush current at startup, OVP (Over Voltage Protection), UVLO (Under Voltage Lock Out), TSD (Thermal Shutdown Detection), SCP (Short Circuit Protection), and OCP (Over Current Protection).

Light load mode operation provides better efficiency in light-load conditions.

Application

Home Appliance Secondary Power Supply and Adapter Equipment Communication Equipment

Operating Limits

Table 1. Operating Limits

Parameter	Min	Тур	Max	Units	Conditions
Input Voltage	12	-	24	V	
Output Voltage		5		٧	
Output Current Range			1	Α	
Operating Frequency		500		kHz	
Maximum Efficiency		97		%	VIN=12V, VOUT=5V
UVLO Detect Voltage		3.9		V	VCC sweep down
UVLO Hysteresis Width		350		mV	

BD9E105FP4-EVK-001 User's Guide

EVK

Figure 1. BD9E105FP4-EVK-001(Top View)

EVK Schematic

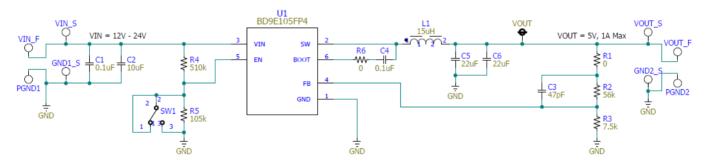


Figure 2. BD9E105FP4-EVK-001 Circuit Diagram

Operating Procedure

- 1. Turn off the DC power supply and connect the GND terminal of the power supply to PGND1 terminal of the EVK.
- 2. Connect the positive terminal of the DC power supply to VIN_F pin of the EVK.
- 3. Connect the load to VOUT_F and PGND2 terminals of EVK. When using an electronic load, connect with the load turned off.
- 4. Connect a voltmeter; the VOUT terminal to the EVK's VOUT_S pin and the GND terminal to the EVK's GND2_S pin.
- 5. Set the toggle switch of SW1 to H (pin 1 and pin 2 are shorted).
- 6. Turn on the DC power supply. Make sure the voltmeter shows 5V.
- 7. Turn on the electronic load.

(Caution) This EVK does not support hot plug. Do not perform hot plug test.

Operation State Settings

Below is the summary table of BD9E105FP4-Z condition by the status of SW1.

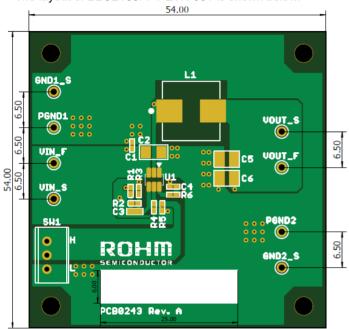
Table 2. SW1 Settings

SW_EN state	BD9E105FP4-Z Condition
H (short 1, 2 pins)	Enable
L (short 2, 3 pins)	Shutdown

Parts list

Table 3. Parts list

Coun	Parts No.	Туре	Value	Description	Manufacturer Part Number	Manufacture r	Size[Unit: mm(inch)]
IC	IC						
1	U1	DCDC	-	Buck Converter	BD9E105FP4-Z	ROHM	2.8 x 2.92 (0.110x0.114)
Inducto	Inductor						
1	L1	Inductor	15µH	±20%, 2.3A DCR=55mΩ±20%,	CLF7045NIT-150M-D	TDK	7045(2818)
Capaci	tor						
2	C1, C4	MLCC	0.1µF	50V, X5R, ±10%	GRM155R61H104KE14	MURATA	1005(0402)
1	C2	MLCC	10µF	50V, X7T, ±10%	GRM31CD71H106KE11	MURATA	3216(1206)
1	C3	MLCC	47pF	250V, C0G, ±5%	GRM1885C2E470JW07	MURATA	1608(0603)
2	C5, C6	MLCC	22µF	25V, X7R, ±20%	GRM32ER71E226ME15	MURATA	3225(1210)
Resisto	or						
1	R1, R6	Resistor	0Ω	1/16W, 50V, ±5%	MCR01MZPJ000	ROHM	1005(0402)
1	R2	Resistor	56kΩ	1/16W, 50V, ±1%	MCR01MZPF5602	ROHM	1005(0402)
1	R3	Resistor	7.5kΩ	1/16W, 50V, ±1%	MCR01MZPF7501	ROHM	1005(0402)
1	R4	Resistor	510kΩ	1/16W, 50V, ±1%	MCR01MZPF5103	ROHM	1005(0402)
1	R5	Resistor	105kΩ	1/16W, 50V, ±1%	MCR01MZPF1053	ROHM	1005(0402)
Connec	Connector						
1	SW1	Toggle Switch	-	Pin pitch 2.54mm SPDT	A-12HP	NKK SWITCHES	-
Contac	Contact pin						
8	VIN_F, VIN_S, VOUT_F, VOUT_S, PGND1, PGND2, GND1_S, GND2_S	Test Pin	-	Turret Terminal L=7.5mm	ST-2-2	MAC8	-


The product and manufacturer names listed in the parts list are current at the time this application note was prepared, and some parts may not be available. Please select the equivalent product based on the characteristics listed in the table. Select a ceramic capacitor with the same actual capacitance in consideration of the DC bias characteristics.

Board Layout

EVK PCB information

Number of Layers	Material	Board Size	Copper Thickness	
4	FR-4 HiTg	54mm x 54mm x 1.6mmt	2/1/1/2oz (1oz≒35µm)	

The layout of BD9E105FP4-EVK-001 is shown below.

54.00

Figure 3. Top PCB Image (Top View)

Figure 4. Bottom PCB Image (Top View)

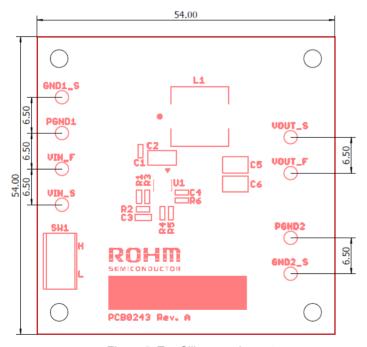


Figure 5. Top Silkscreen Layout (Top View)

BD9E105FP4-EVK-001 **User's Guide**

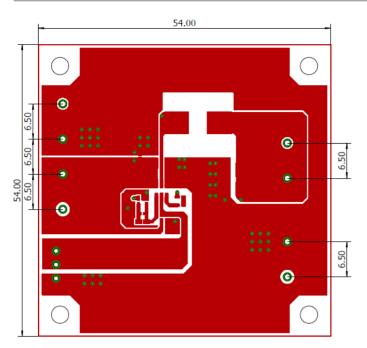


Figure 6. Top Layer (Top View)

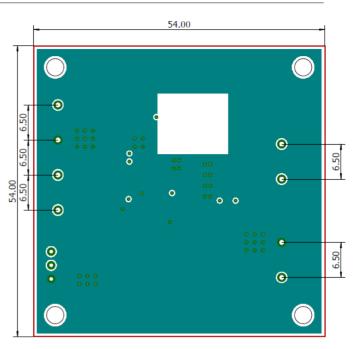


Figure 7. Middle Layer 1 (Top View)

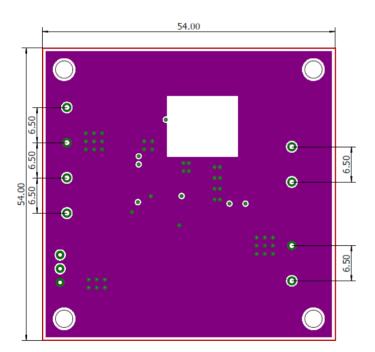


Figure 8. Middle Layer 2 (Top View)

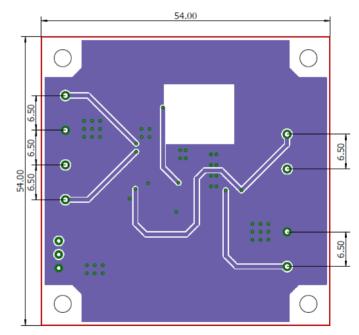


Figure 9. Bottom Layer (Top View)

Reference Application Data

Time= 2 ms/div

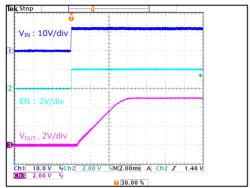


Figure 10. Startup waveform $R_{LOAD}=5\Omega$ (V_{IN}=0V to 12V, SW1=H, V_{OUT}=5V)

Time= 2 ms/div

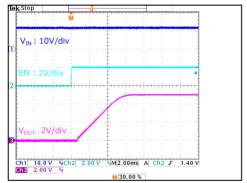


Figure 12. Startup waveform R_{LOAD} =5 Ω $(V_{IN}=12V, SW1=L \text{ to H}, V_{OUT}=5V)$

Time= 2 ms/div

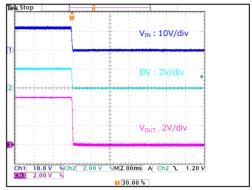


Figure 11. Shutdown waveform $R_{LOAD}=5\Omega$ (V_{IN}=0V to 12V, SW1=H, V_{OUT}=5V)

Time= 2 ms/div

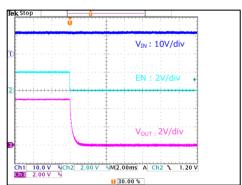


Figure 13. Shutdown waveform R_{LOAD} =5 Ω (V_{IN} =12V, SW1=H to L, V_{OUT} =5V)

Reference Application Data - continued

Time=2 ms/div

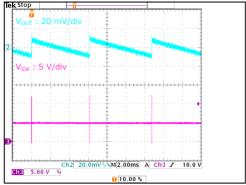


Figure 14. Ripple voltage (V_{IN}=12V, V_{OUT}=5V, I_{OUT}=0A)

Time=1 µs/div

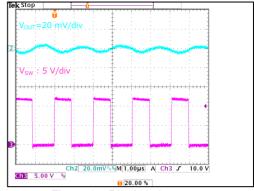


Figure 15. Ripple voltage (V_{IN}=12V, V_{OUT}=5V, I_{OUT}=1A)

Time=2 ms/div

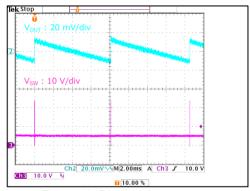


Figure 16. Ripple voltage (V_{IN} =24V, V_{OUT} =5V, I_{OUT} =0A)

Time=1 µs/div

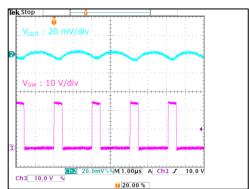


Figure 17. Ripple voltage (V_{IN}=24V, V_{OUT}=5V, I_{OUT}=1A)

Reference Application Data - continued

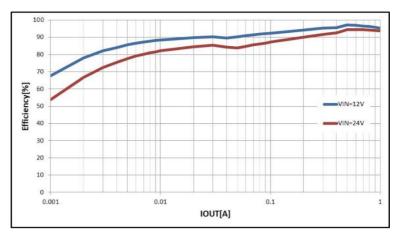


Figure 18. Efficiency vs Load current (V_{IN}=12V / 24V, V_{OUT}=5V)

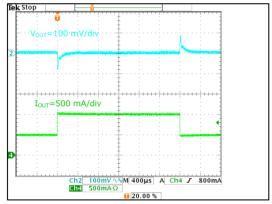


Figure 19. Load transient (V_{IN}=12V, V_{OUT}=5V, I_{OUT}=0.5A to 1A)

Figure 21. Frequency response (V_{IN}=12V, V_{OUT}=5V, I_{OUT}=1A)

Time=400 µs/div

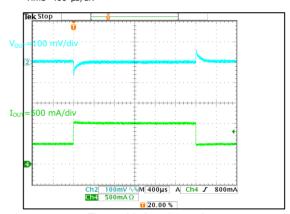


Figure 20. Load transient $(V_{IN}=24V, V_{OUT}=5V, I_{OUT}=0.5A to 1A)$

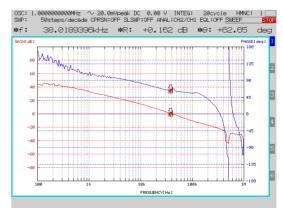


Figure 22. Frequency response (V_{IN}=24V, V_{OUT}=5V, I_{OUT}=1A)

User's Guide

Revision History

Date	Revision Number	Description
27 th , Aug. 2021	001	Initial release
5 th , Oct. 2022	002	p.6 Figure 10 Correct output voltage condition

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/