

Battery Management System Reference Design

Maxell All-solid-state Battery + Nano Energy™ Collaboration Board

REFLVBMS002-EVK-001

Introduction

This User's Guide provides the information and necessary procedures to operate and evaluate the Maxell's All-solid-state Battery (PSB401010H) + Nano Energy[™] Collaboration Board. It includes the board schematic, peripheral parts list, and operating instructions.

Please note that this board has been prepared for the purpose of simple evaluation of Maxell's All-solid-state Battery and Nano EnergyTM characteristics, and we cannot guarantee its quality. In addition, this evaluation board is intended to be used by professionals for research and development purposes. This board is not intended to be used in mass production products or any part thereof.

Note: Nano Energy[™] is a trademark or registered trademark of ROHM Co., Ltd.

Description

This collaboration board charges the All-solid-state battery (PSB401010H) manufactured by Maxell, and outputs the power stored in the battery by stepping up and stabilizing it. The Power Supply and RESET ICs with Nano Energy technology maximize the battery life.

For the specifications of the Linear charger dedicated for Maxell's All-solid-state battery, RESET IC, and Step-up DC-DC converter IC that realize these functions, please refer to the datasheet in ROHM Co. Ltd. website. For the specifications of All-solid-state battery (PSB401010H), please refer to datasheet in Maxell's website.

Maxell, Ltd., web site (<u>https://www2.maxell.co.jp/</u>) Maxell's All-solid-state battery special web site (<u>https://biz.maxell.com/en/rechargeable_batteries/allsolidstate.html</u>)			
Battery PSB401010H			
ROHM Co., Ltd. web site (<u>https://www.rohm.com</u>)			
Linear Charger BD7090NUV			
Step-up DC-DC converter BD8B133NVX (Under development *As of January 2023)			
RESET BU49xxFVE (xx : Number indicating detection voltage)			

Storage Precautions

The board is equipped with a battery.

When storing the board, keep it in a bag to prevent short-circuit between the positive and negative terminals of the battery. Set the EN jumper on the board to "L" to turn off the DC-DC converter.

Operating conditions

Figure 1 : Block Diagram of Battery and each ICs

Figure 1 shows the block diagram of the collaboration board. The charger IC (BD7090NUV) starts charging the Battery (PSB401010H) by applying voltage to the VIN pin or MicroUSB connector. If charging is not required, leave the VIN pin and MicroUSB connector open. The RESET IC (BU49xx) constantly monitors the PSB404010H's voltage and forcibly stops the operation of the DC-DC converter when the Battery voltage falls below BU49xx's threshold voltage. (The RESET IC is optional; without the RESET IC, the step-up DC-DC converter can be operated up to its operational range.) The DC-DC converter (BD8B133NVX) converts the power stored in the PSB404010H battery with high efficiency. The discharge time is determined by the stored power of the Battery.

Below are the recommended operating conditions for the Maxell All-solid-state battery + Nano Energy collaboration board:

Item	Symbol	Min	Тур	Max	Unit	Conditions
Charge Input Voltage	V _{IN}	2.9	-	5.5	V	Charger Input
Output Current	Іоит	-	-	*1	mA	*1 (All solid-state battery capacity: 30mA)/boost-up ratio
Operating Ambient Temperature (Charging)	$T_{a,chg}$	-20	-	105	°C	Depends on all solid-state battery regulations
Operating Ambient Temperature (Discharge)	$T_{a,dischg}$	-40	-	125	°C	Depends on DC-DC and all solid- state battery provisions

 Table 1 : Recommended Operating Conditions

Typical characteristics are shown below. For detailed characteristics, please refer to the datasheet of each IC.

Item	Symbol	Min	Тур	Max	Unit	Conditions
DC-DC converter off voltage	V _{dcdcoff}	0.9	-	-	V	UVLO detection of DC-DC converter
DC-DC converter on voltage	Vdcdcon	-	0.9	1.1	V	UVLO detection of DC-DC converter
Output voltage setting range	VOUTSEL	3.0	-	3.3	V	2-step setting (VSEL=L or H)
Output Voltage Accuracy	VTOL	-4.0	0.0	4.0	%	lout=0mA
Startup load	R _{stup}	3.0	-	-	kΩ	Activatable load resistance
Charge voltage	Vchg	-	2.6	-	V	R8=100kΩ,R9=332kΩ
Charge current	I _{CHG}	-	4.0	-	mA	R3A=1.5kΩ, R3B=124kΩ
termination current	ITERM	-	0.15	-	mA	R4=332kΩ

Board Overview

This board achieves area-saving mounting by using an ultra-small All-solid-state battery and a Nano Energy IC encapsulated in an ultra-small package. Since the board has a charging function and a discharging function for battery management on the same board, the overall characteristics of the "battery + power supply" can be evaluated.

In addition, by mounting a RESET IC, it is possible to turn on/off the step-up DC-DC converter at any battery voltage. (Since the RESET IC is not mounted on this board, it is specified within the operation range of the step-up DC-DC converter.)

Figure 2 : Collaboration Board Mounted Products

Board Description

The factory default pin settings are EN=L, VSEL1=L, and VSEL2=L. Figure 3 : Collaboration Board Pin and Jumper Description

Board photo

Top View

Bottom View
Figure 4 : Collaboration Board Photo

About Jumper Settings

The board uses HHP-3 jumpers manufactured by MAC EIGHT CO., LTD..

To set the state of the jumpers, short the center terminal of the HHP-3 to the H side terminal or L side terminal as specified on the silk.

Figure 5 : Terminal Jumper Description

Board Schematic

Note: Refer to the parts list on the next page for the fixed value of parts.

Figure 6 : Board Schematic

Parts List

Unit	Part	Value			Description
Charger	U1	-	IC	ROHM	BD7090NUV
	R1	1.6kΩ	Resistor	ROHM	MCR006
	R3A	1.5kΩ	Resistor	ROHM	MCR006
	R3B	124kΩ	Resistor	ROHM	MCR006
	R4	332kΩ	Resistor	ROHM	MCR006
	R5A	EMPTY	Resistor		
	R5B	0Ω	Resistor	ROHM	MCR006
	R8	100kΩ	Resistor	ROHM	MCR006
	R9	332 kΩ	Resistor	ROHM	MCR006
	C1	10µF	Capacitor	Murata	GRM188Z71A106KA73D
	C3	0.1µF	Capacitor	Murata	GRM033C71C104KE14D
	C5	EMPTY	Capacitor		
	C10	10µF	Capacitor	Murata	GRM188Z71A106KA73D
	D1	-	LED	ROHM	SML-P11VTT86RH
RESET	U6	EMPTY	IC		
	R6	0Ω	Resistor	ROHM	MCR006
	C4	EMPTY	Capacitor		
DC-DC	U5	-	IC	ROHM	BD8B133NVX
	C2	10µF	Capacitor	Murata	GRM188Z71A106KA73D
	C6	4.7µF	Capacitor	Murata	GRM155D71A475ME15D
	L1	0.47µH	Inductor	Murata	DFE18SANR47MG0#
Battery	U4	-	Battery	Maxell	PSB401010H
Other	J1	0Ω	Jumper	ROHM	PMR01ZZPJ000
	J2	EMPTY	Jumper		
	J3	EMPTY	Jumper		
	J4	EMPTY	Jumper		
	J5	-	Jumper	マックエイト	HHP-3
	J6	-	Jumper	マックエイト	HHP-3
	J7	EMPTY	Jumper		
	CN1	-	Connector	HIROSE	ZX62-B-5PA(33)

Table 3 : Parts List of Collaboration Board

Board Operating Procedure

■ Procedure for charging All-solid-state battery PSB401010H

Input a DC voltage of 2.9V~5.5V (current capability of 10mA or more) between VIN and GND. Alternatively, connect a USB line supplying 5 V to the MicroUSB connector mounted on the back side. 5 V cannot be applied simultaneously to the VIN pin and the MicroUSB connector.

The LED turns on while charging the PSB401010H and turns off when charging is complete.

When the EN jumper is set to "H", the DC-DC converter operates during charging.

■ DC-DC converter output procedure

To operate the DC-DC converter, set EN = H.

When startup is completed, the voltage of the step-up DC-DC converter is output from the VOUT pin.

■ DC-DC converter output voltage setting procedure

- (1) Turn off the DC-DC converter with EN = L.
- ② Set the VSEL jumper state to the desired output voltage (see table below).
- ③ Set EN = H to turn ON the DC-DC converter. VOUT will be equal to the configured voltage output.

VOUT	VSEL	
1.8V	Open (Don't Use)	
3.0V	L	
3.3V	Н	

Table 4 : DC-DC Converter Output Voltage Setting with VSEL Jumper

Board PCB Layout

PCB information

Layers	Material	Board dimension	Copper thickness
4	FR-4	30mm x 21mm x 1.0mm	1oz (35µm)

Table 5 : PCB Information

Board Layout

Middle Layer

Figure 7 : Collaboration Board Layout

Specification Notes

- The step-up DC-DC converter on this board is equipped with a development product. Although we have thoroughly checked the operation of the board, we will replace the board if it is defective in operation.
- Since the battery terminals are exposed, when storing the product, stop the DC-DC converter by setting EN=L and store the product in individual bags to prevent the battery terminals from short-circuiting.
- The output current of the step-up DC-DC converter is limited by the battery capacity, so do not connect a load that exceeds the battery capacity.
- Since RESET (battery voltage monitoring IC) is not mounted on this board, it operates up to the lower input limit of the step-up DC-DC converter. When the battery voltage is lower than the nominal voltage, heavy load start-up should not be performed. It may not be possible to start up due to high internal resistance of the battery.

Revision History

Revision	Note				
001	Create New.				
002	Corrected from BD8B133NWX to BD8B133NVX.				

	Notes
1)	The information contained herein is subject to change without notice.
2)	Before you use our Products, please contact our sales representative and verify the latest specifica- tions :
3)	Although ROHM is continuously working to improve product reliability and quality, semicon- ductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
4)	Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
5)	The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
6)	The Products specified in this document are not designed to be radiation tolerant.
7)	For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
8)	Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
9)	ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
10)	ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
11)	Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
12)	When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
13)	This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/