
Linear Regulators, Switching Regulator ICs

LDO, DC-DC Converter Design Tool Selection Guide

Using the Design Tools on the ROHM Website

Ver. 1.1

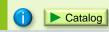
Linear Regulators, Switching Regulator ICs

LDO, DC-DC Converter Design Tool Selection Guide

Using the Design Tools on the ROHM Website

On the ROHM website, we provide technical data including application notes, online simulators, various simulation models, and other design tools such as spreadsheets for calculation of constants. This guide explains how to use various design tools throughout the development steps for LDO and DC-DC converters.

How to use this guide:


- Since the guide requires access to the ROHM website, ensure you have a reliable Internet connection.
- Do not use the functions of your PDF browser to move back and forth between pages. Use the buttons on the pages instead.
- This guide may not display correctly if the PDF file is viewed with a web browser. Use a PDF reader such as Adobe Acrobat.

	Tools for each development step								
Initial Study	Initial Study Circuit Design		Evaluation						
 Topology Selection Reference Design DATA SHEET Evaluation Board (EVK) Web Simulation 	 Reference Design DATA SHEET Calculation Sheet Application Note Evaluation Board (EVK) Web Simulation Design Model 	 Package Information PCB Library 3D Model Application Note DATA SHEET 	- Application Note						

Application notes have been published to help circuit design, thermal design, PCB design, and evaluation methods.

Evaluation

Design Model

Provides models for SPICE and other CAE tools including thermal analysis.

Click the button for the tool you want to view **Button descriptions**

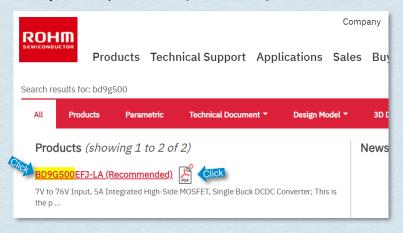
www Displays the website

Catalog Displays the catalog

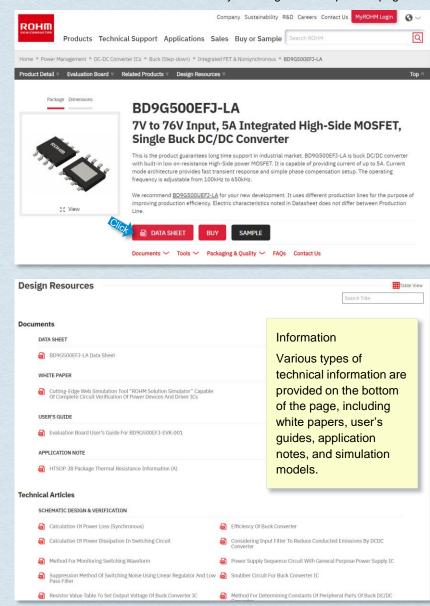

Tool introduction

Page 1/2

Obtain through one of the following methods:


Method 1. If the product name is known

Step 1: Enter the product name into the search window on the upper right of the ROHM website.



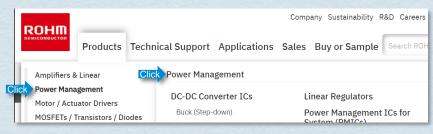
Step 2: To take a shortcut, click the PDF icon.

Usually, click the product name (recommended).

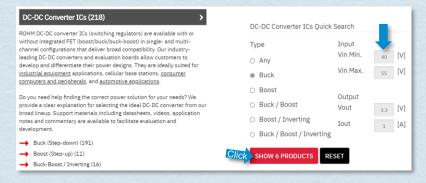
Step 3: When the product page is displayed, click the [DATA SHEET] button. In addition, you can obtain further technical information by scrolling down the product page.

Back

TOP

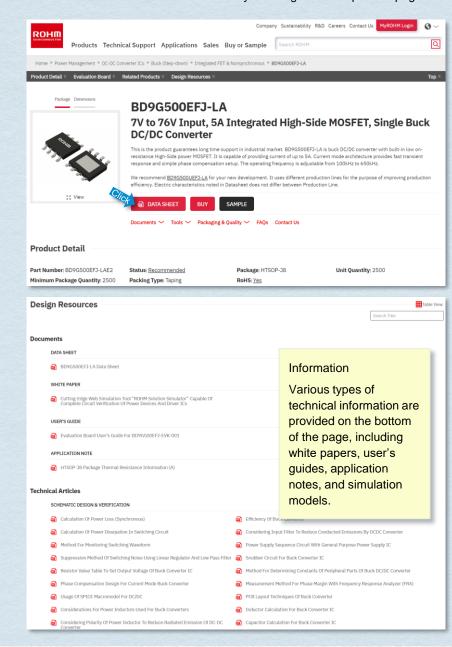


Previous page


How to obtain a data sheet (continued)

Method 2. If the product name is not certain

Step 1: Select "Power Management" in "Products" on the ROHM website.

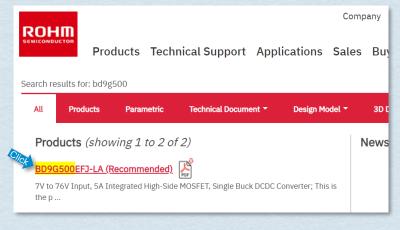

Step 2: Enter the conditions and click the [SHOW] button.

Step 3: The search result is displayed. To take a shortcut, click the PDF icon. Usually, click the product name (recommended).

Matching Parts : 6	≜ ∀						
Compa	O S S S S S S S S S S S S S S S S S S S	Topology ‡	Vin1 (Max.) [V]	Vout1 (Max.) [V]	Vout1 (Min.) [V]	Iout1 (Max.) [A]	Grade
BD9G500UEFJ-LA (New)	inquiry	Buck	76	68.4	1	5	Indus
BD9G341AEFJ	BUY SAMPLE	Buck	76	76	1	3	Stand
BD9G341AEFJ-LB	BUY SAMPLE	Buck	76	76	1	3	Indus
BD9G500EFJ-LA	BUY SAMPLE	Buck	76	68.4	1	5	Indus
BD9V100MUF-C	BUY SAMPLE	Buck	60	5.5	0.8	1	Autom
BD9V101MUF-LB	BUY SAMPLE	Buck	60	5.5	0.8	1	Indus

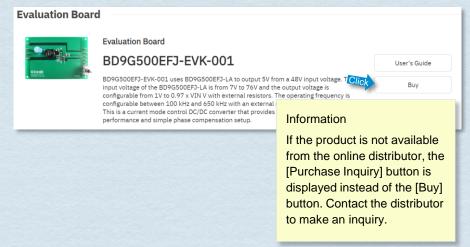
Step 4: When the product page is displayed, click the [DATA SHEET] button. In addition, you can obtain further technical information by scrolling down the product page.

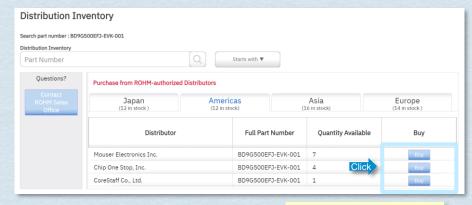
EVK


Page 1 / 1

How to obtain EVK

Step 1: Enter the product name into the search window on the upper right of the ROHM website.


Step 2: Click the product name.


Step 3: When the product page is displayed, scroll down the page.

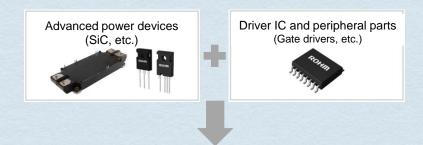
Step 4: If the "Evaluation Board" section is displayed, the board is available for purchase. Click the [Buy] button.

Step5: The availability from online distributors is displayed. Purchase the product through their website.

Information

No document is supplied with the purchased EVK.

Obtain the document by clicking the [User's Guide] button in Step 4.



ROHM Solution Simulator

Page 1/2

What is the ROHM Solution Simulator?

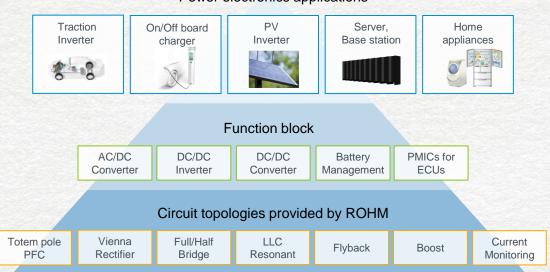
- √ Simulation tool you can run on the website
- √ Can verify the designs using circuits close to applications
- √ Can select from an extensive range of solution circuits, including mainly power devices and gate drivers
- √ High reproducibility of simulations achieved by incorporating high precision SPICE models. Coordination with certain evaluation boards
- Exportable to external simulators. Can be developed to customer's simulator circuits

To realize the maximum potential of power devices, know-how for tuning between parts is required

While tuning, ideal circuit parameters can be derived

Using the ROHM Solution Simulator

Utilizing the solutions provided by ROHM



From the steps for selecting parts and considering the validity of circuits, system level simulations can be repeatedly performed for analysis. Therefore, critical problems are less likely to occur after a trial, reducing the number of retrials and the hours for development.

Provides solution circuits suited for various applications

Simulation circuit diagrams cover various power electronics applications

Power electronics applications

ROHM Solution Simulator Previous page

Page 2/2

What can be done with the ROHM Solution Simulator

Step 1:

Select a solution circuit

Select a solution circuit suited for the application from the solution circuit list

Simulation Circuit

[Power Device Solution Circuit]

AC-DC PFC

DC-AC Inverter

DC-DC Converter

NEW Other Application

[ICs Solution Circuit]

Automotive Power Tree

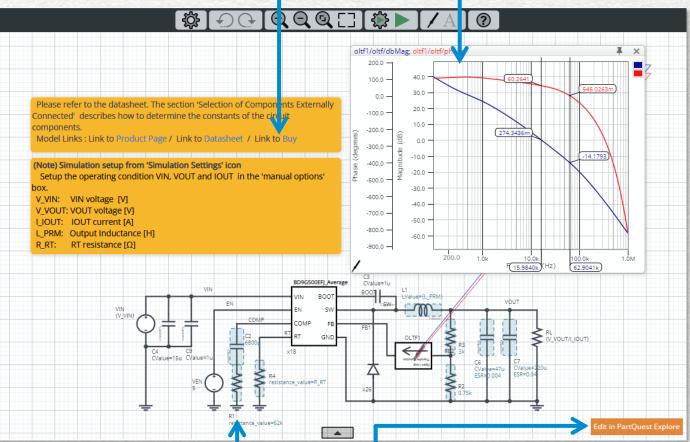
Switching Regulators

LED Drivers

Linear Regulators

NEW Operational Amplifiers

[Optical Devices Solution Circuit]


NEW Laser Diode

Step 4: Order samples You can purchase samples for trial evaluation and evaluation boards via the links of the distribution partners shown in the circuit diagrams.

Step 3:

Perform simulations and monitor results

You can set and operate simulations intuitively. After performing simulations, you can check the results easily with the powerful waveform analysis tool.

Step 2:

Select devices and change values

The simulation screen is displayed. The constants recommended by ROHM have been entered in advance. Use these as base values for adjusting the parameters.

Step 5:

Expand circuits in an external environment

In addition to adjusting the parameters, you can export the circuit data to PartQuest Explore to expand system circuits and develop original circuits by changing the circuit types or adding different circuits.

TOP

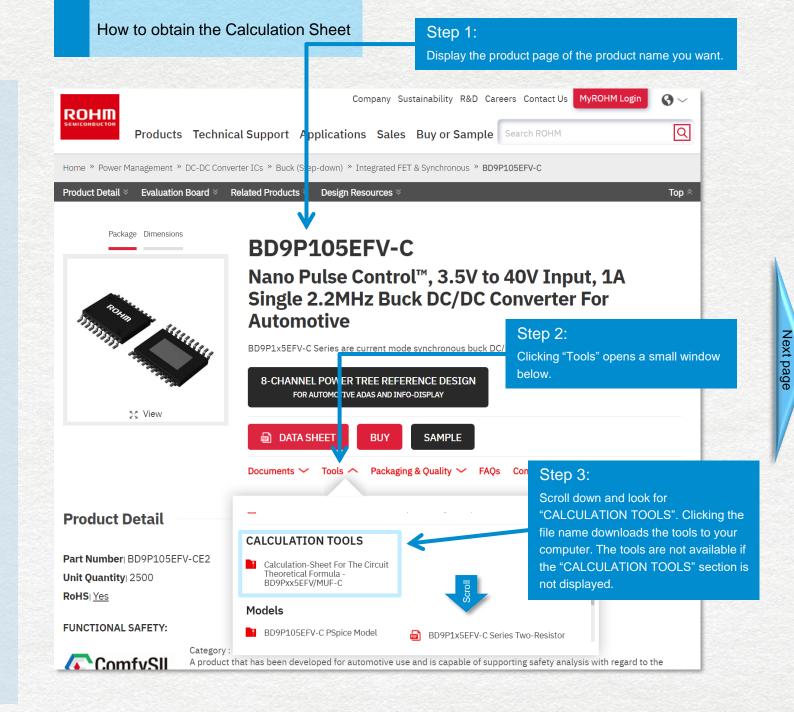
Calculation Sheet

Page 1 / 5

Design calculation tool What is the Calculation Sheet?

ROHM has published the Calculation Sheet that assists you in designing peripheral circuits for DC-DC and AC-DC converter ICs.

The Calculation Sheet is a design tool for application circuits based on the method of selecting parts described in product data sheets. Since the tool is equipped with calculation formulas required for determining the peripheral parts and other tasks, you can easily determine the circuit parameters that satisfy desired characteristics by setting values according to the instructions.


This tool is provided in a Microsoft Excel file format.

DC-DC converter

- Automatically calculates the theoretical equation for the peripheral circuit design described in the data sheet, and automatically judges whether or not the value is within the setting range
- ✓ Outputs the BOM list and summary sheet of the design result

AC-DC converter

- ✓ Can calculate coils, transformers, and other peripheral parts of flyback converters and buck converters
- Main components, including IC and peripheral parts such as Schottky barrier diodes, fast recovery diodes, electrolytic capacitors, and transformers, are compiled into a database, allowing you to sort the parts and select them on the spot.

Calculation Sheet

Page 2 / 5

BD9Pxx5EFV-C, BD9Pxx5MUF-C Calculation Sheet

この計算シートはデータシートに記載されている理論式を計算します。

実際の評価ボードの特性は、寄生や部品誤差などによって、理論式の計算結果と異なる場合があります。

最終的には、実際の評価ボードで特性を必ず評価して下さい。また、特性の調整が必要な場合は目的の特性に近つけるために周辺部品の値や条件を調整して

This calculation sheet calculates the theoretical formula described in the data sheet.

Actual evaluation board characteristics may not match the results of the theoretical for mula due to part errors (accuracy, parasitics, etc.).

It is highly recommended to check the characteristics on an actual evaluation board on the characteristics, adjust the external part values

BD9P205EFV/MUF-C

BD9P235EFV/MUF-C BD9P255EFV/MUF-C

BD9P105EFV/MUF-C

Datasheetを見ながらこの計算シートを使用してください。 Use this calculation sheet while looking at Datasheet. :auto calculated value (or the value copied from another cell)
:value of external parts / customer's condition
:Internal characteristics (Datasheet value)
:Setting range is limited

メニューから製品名を選択してください。

Select the product name from the pull-down menu.

推奨動作条件(データシートp10より抜粋)

Recommended operating conditions (extracted from the datash

Recommended operating condit	ions (extracted from the datasir	BD9P135EFV	/MUF-C			
Parameters	Parameters Symbols		/MUF-C	wax	Units	Conditions
入力電圧	V _{VIN} , V _{PVIN}	3.5	_	40	V	
Input Voltage	VVIN, VPVIN	3.5 - 40		40	, v	
出力電圧	Vout	0.8		8.5	V	
Output Voltage	VOUT	0.6		0.5	, v	
SW最小ON時間				50	ns	
SW Minimum ON Time	t _{ONMIN}	_	_	50	115	
SW最小OFF時間				130		VREG = 3.3V
SW Minimum OFF Time	toffmin	-	- 130	130	ns	
出力電流	1			1	Α.	OCP_SEL = H
Output Current	l _{out}	-	-	1	Α	

電気的特性 (データシートp10より抜粋)

Electrical characteristics (extracted from the datasheet p10)

Lieculcal characteristics (extracted in	ectrical criatacteristics (extracted from the datastreet pro)								
Parameters	Symbols	Min	Тур	Max	Units	Conditions			
スイッチング周波数	f _{sw}	2.0	2.2	2.4	MHz				
Switching Frequency	'SW	2.0	2.2	2.4	IVII 12				
ソフトスタート時間	t	2.5	3.0	3.9	ms				
Soft Start Time	T _{SS}	2.5	3.0	5.5	1113				
過電流保護スレッショルド	l	1.000	1.250	1.500	Α				
Over Current Protection Threshold	I _{OCP}	1.000	1.230	1.500	^				

以下の黄色で示されたセルに設計値を入力してください。

Fill the design parameters in the yellow cells below

Category	Parameters	Symbols	Value	Units	Conditions]
入力条件 Inputu Conditions	入力電圧(最小値) Input Voltage (Minimum)	V _{IN(Min)}	9.0	V	3.5V≦ V _{IN(Min)} ≦ V _{IN(Max)}	/* 1
	入力電圧 Input Voltage	V _{IN}	12.0	V	$V_{IN(Min)} \leqq V_{IN} \leqq V_{IN(Max)}$	
	入力電圧 (最大値)	V _{IN(Max)}	16.0	V	$V_{IN(Min)} \le V_{IN(Max)} \le 40V$	W

Step 1:

The cells are color-coded according to their functions. The yellow cells are for selecting or inputting values. The blue cells display the calculation results. The gray cells display the setting values on the data sheet.

Step 2:

If the Calculation Sheet supports the series of models, selecting a product automatically sets the relevant entries such as recommended operation conditions.

Page 3/5

出力R_{FB1},R_{FB2}の選定(BD9Px05EFV/MUF-Cのみ)

Determine the output voltage setting registers R_{FB1},R_{FB2} (BD9Px05EFV/MUF-C only)

BD9P205EFV-ClはReat, Reasの抵抗比で出力電圧Vourを設定します。Vourlは次式で設定できます。

Vour can be calculater form the following equation.

$$V_{OUT} = \frac{R_{FB1} + R_{FB2}}{R_{FB2}} \times 0.80[V]$$

目標の出力電圧VOUT_TargetとRFB1, RFB2の合成抵抗から、

RFB1、RFB2の目標値を算出します。

Calculate the target value for RFB1 and RFB2 from the VOUT Target and

the resultant resitance			
$R_{FB1} \parallel R_{FB2}$	RFB1, RFB2の合成抵抗を入力 20.0		kΩ
	Designated resultant resitance	20.0	1022
R _{FB1_Target}		125.0	kΩ
R _{FB2_Target}		23.8	kΩ

R_{FB1_Target}, R_{FB2_Target}をもとに実<mark>ま</mark>するR_{FB1},F Vourを算出します。

Set R_{FB1} and R_{FB2} values and alculate V_{OUT}.

R _{FB1}	130.0	kΩ
R _{FB2}	20.0	kΩ
V _{OUT}	6.00	V
R _{FB1} +R _{FB2}	17.3	kΩ

 $%R_{FB1}$, R_{FB2} の合成抵抗を100k Ω 以上とする場合は、以下の式のように C_{FB1} , C_{FB2} を配置してください。

When choosing R_{FB1} and R_{FB2} resultant resistance is larget than 100kΩ, consider to add C_{FB1} and C_{FB2} as follows.

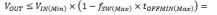
$$\frac{R_{FB1} \times C_{FB1}}{R_{FB2} \times C_{FB2}} \approx 1, \qquad C_{FB1}, C_{FB2} \geq 47[pF]$$

出力電圧レンジ

安定したスイッチング周波数を確保するために、以下の数式を満たす出力レンジで使用します。

以下の数式を満足しない場合、スイッチング周波数が低下し出力リップル電圧が増加します。

To secure the operation with stable switching frequency, choose the parameters to fulfil the following equation.


Or the switching frequency can be lost and the output ripple voltage will increase.

$$V_{OUT} \ge V_{IN(Max)} \times f_{SW(Max)} \times t_{ONMIN(Max)} = 1.92 \text{ M}$$

入力電圧と出力電圧の差が減少すると、オフ時間をスキップしスイッチング周波数が低下します。

安定したスイッチング周波数を確保するためには以下の条件を考慮します。

The switching frequency will be lost when the difference of VIN and VOUT decrease. The following equation should be considered for the operation with sta

6.192 [V]

1.92 [V]

Judge: OK

Judge: OK

出力しの選定

Output Inductance L₁

(Datasheet p.31 Selection of the inducor L1 value)

以下の式より出カインダクタンスL1を求められます。カレントモード制御でのサブハーモニック発振防止と帰還ループ安定以下のため、下表の範囲で使用し The following equation calculates the inductance L₁. To avoid the sub-harmonic oscillation or feedback loop instability, observe the inductance range show

 $L_1 = \frac{(V_{IN(Max)} - V_{OUT}) \times V_{OUT}}{V_{IN(Max)} \times f_{SW} \times \Delta I_L} [H]$

上式から、この時のインダクタ・リッブル電流AIが算出できます。

AIL can be calculated from the equation above

0.36 [A]

4.70 [µH]

出力リッブル電圧△Vp₽の箕出

Output peak-to-peak ripple voltage $\Delta V_{p,p}$ Calculation

ΔI,が減少すると、インダクタのコア損失、CourのESRによる損失が減少し、出力リップル電圧ΔVp.が減少します。

ΔVp.plま次の方程式で求まります。

The inductor core loss or the loss from C_{OUT} ESR will become smaller when ΔI_L decrease. The following equation gives $\Delta V_{P,P}$

(Datasheet P31)

$$\Delta V_{P-P} = \Delta I_L \times ESR + \frac{\Delta I_L}{8 \times C_{OUT} \times f_{SW}} [V]$$

 $\Delta V_{D-D} = 1.33$ [mV]

Step 4:

Entering values according to the data sheet and the instructions updates the entire calculation result immediately.

It is also easy to make changes repeatedly.

Using the Calculation Sheet prevents overlooking the design constraints and allows you to select parts that satisfy the operating conditions.

Step 5:

If an input value is outside the working range, the tool outputs an error message and urges you to correct the value.

以下の黄色で示されたセルに設計値を入力してください。

出力R_{FB1},R_{FB2}の選定(BD9Px05EFV/MUF-Cのみ)

Determine the output voltage setting registers R_{FB1},R_{FB2} (BD9Px05EFV/MUF-C only)

Category	Parameters		Sy, abols	Value	Units	Conditions
入力条件 Inputu Conditions	入力電圧(最小値) Input Voltage (Minimum)		V _{IN(ML})	9.0	V	3.5V≦ V _{IN(Min)} ≦ V _{IN(Max)}
	入力電圧 Input Voltage		V _{IN}	12.0	V	$V_{IN(Min)} \leq V_{IN} \leq V_{IN(Max)}$
	入力電圧(最大値) Input Voltage (Maximum)		V _{IN(Max)}	16.0	V	$V_{IN(Min)} \leq V_{IN(Max)} \leq 40V$
出力条件 Output Conditions	出力電圧目標値 Target of the output voltage V _{out}		V _{OUT_Target}	10	V	0.8V<=VOUT_Target<=8.5V
	起動時負荷による出力電流最大値 Maximum load current during start		I _{OUT_START(Max)}		t range is	_{cP} (Min)
出カインダクタ Output Inductance	インダクタンス Indcutance		L ₁	4.7 outp	out voltage	μH to 15μH
出力キャパシタ Output Capacitor	容量 Capacitance 等価直列抵抗	Micr	С _{оит} osoft Excel	44.00	je above.	×
	Equivalent Series Resistor 定格リップル電流 Ripple Current Rating	<u>/i</u>	Data out	J		
	I rappie out of the trading	<u>/!</u>	Continue	? <u>N</u> o	Can	cel Help

Step 6:

Judges the calculation result and reports the results If the calculation result does not comply with the specifications, review and reset the input values.

出力R_{FB1},R_{FB2}の選定(BD9Px05EFV/MUF-Cのみ)

Determine the output voltage setting registers RFB1,RFB2 (BD9Px05EFV/MUF-C only)

BD9P205EFV-Cl zR_{FB1} , R_{FB2} の抵抗比で出力電圧 V_{OUT} を設定します。 V_{OUT} は次式で設定できます。

V_{OUT} can be calculater form the following equation.

$$V_{OUT} = \frac{R_{FB1} + R_{FB2}}{R_{FB2}} \times 0.80[V]$$

目標の出力電圧VOUT_TargetとRFB1, RFB2の合成抵抗から、

RFB1, RFB2の目標値を算出します。

Calculate the target value for RFB1 and RFB2 from the VOUT Target and

recultant resitance in the table helow

the resultant resitance	ne resultant resitance in the table below.									
	RFB1, RFB2の合成抵抗を入力 Designated resultant resitance	20.0								
R _{FB1_Target}		125.0	kΩ							
RFB2_Target		23.8	kΩ							

R_{FB1_Target,} R_{FB2} _{arget}をもとに実装するR_{FB1},R_{FB2}を; V_{OUT}を算出します。

Set R_{FB1} and R_{F 2} values and calculate V_{OUT}.

FB1	10.0	kΩ	-
FB2	20.0	kΩ	-
OUT	1.20	V	
FB1+RFB2	6.7	kΩ	

 $%R_{FB1}$, R_{FB2} の合成抵抗を100k Ω 以上とする場合は、以下の式のように C_{FB1} , C_{FB2} を配置してください。 When choosing R_{FB1} and R_{FB2} resultant resistance is larget than 100k Ω , consider to add C_{FB1} and C_{FB2} as follows.

$$\frac{R_{FB1} \times C_{FB1}}{R_{FB2} \times C_{FB2}} \approx 1, \qquad C_{FB1}, C_{FB2} \geq 47[pF]$$

出力電圧レンジ

安定したスイッチング周波数を確保するために、以下の数式を満たす出力レンジで使用します。

以下の数式を満足しない場合、スイッチング周波数が低下し出力リップル電圧が増加します。

To secure the operation with stable switching frequency, choose the parameters to fulfill the following equation. Or the switching frequency can be lost and the output ripple voltage will increase.

 $V_{OUT} \ge V_{IN(Max)} \times f_{SW(Max)} \times t_{ONMIN(Max)} =$

1.92 [V] Judge: NG

入力電圧と出力電圧の差が減少すると、オフ時間をスキップしスイッチング周波数が低下します。 安定したスイッチング周波数を確保するためには以下の条件を考慮します。

The switching frequency will be lost when the difference of VIN and VOUT decrease. The following equation should be considered for the operation with sta

 $V_{OUT} \le V_{IN(Min)} \times \left(1 - f_{SW(Max)} \times t_{OFFMIN(Max)}\right) =$

6.192 [V]

Judge: OK

出力しの選定

Output Inductance L₁ (Datashe

(Datasheet p.31 Selection of the inducor L1 value)

以下の式より出力インダクタンスL1を求められます。カレントモード制御でのサブハーモニック発掘防止と帰還ルーブ安定以下のため、下表の範囲で使用し The following equation calculates the inductance L₁. To avoid the sub-harmonic oscillation or feedback loop instability, observe the inductance range show

$$L_1 = \frac{(V_{IN(Max)} - V_{OUT}) \times V_{OUT}}{V_{IN(Max)} \times f_{SW} \times \Delta I_L} [H]$$

L₁= 4.70 [μH]-----

Judge: OK

TOP

Information

Calculation Sheet

Page 5 / 5

How to use (continued)

A summary sheet showing the design result is prepared. You can use it directly in the design report.

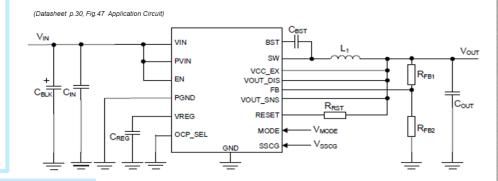
Summary: BD9Pxx5EFV-C, BD9Pxx5MUF-C Calculation Sheet

REV.002 20210911 ©2020 ROHM Co., LTD.

この計算シートはデータシートに記載されている理論式を計算します。 実際の評価ボードの特性は、寄生や部品誤差などによって、理論式の計算結果と異なる場合があります。

最終的には、実際の評価ボードで特性を必ず評価して下さい。また、特性の調整が必要な場合は目的の特性に近づけるために周辺部品の値や条件を調整して下さい。

This calculation sheet calculates the theoretical formula described in the data sheet.


Actual evaluation board characteristics may not match the results of the theoretical formula due to part errors (accuracy, parasitics, etc.).

It is highly recommended to check the characteristics on an actual evaluation board. If you need to improve the characteristics, adjust the external part values and conditions to get closer to your target.

Product No. BD9P205EFV/MUF-C

(2)計算結果

		_		
				:Value from 1. Calculation sheet
Compone	nts parameters	Value	Units	Conditions
R _{FB1}		130.0	kΩ	
R _{FB2}		20.0	kΩ	
R _{RST}		10	kΩ	
C _{BLK}		220	μF	Electrolytic capacitor
CIN		0.1	μF	Ceramic Capacitor
C _{REG}		1	μF	Ceramic Capacitor
C _{BST}		0.1	μF	Ceramic Capacitor
Cour	C _{OUT}	44.00	μF	
	ESR	2.370E-03	Ω	
	Ripple Current	1.0	Α	
L ₁	•	4.7	μH	

Step 8:

Previous page

Displays the list of design values, including the characteristic values.

Step 7:

of the

circuit.

Displays the

application

parts constants

	Parameters	Symbols	Value	Units	Judge		Condition	
设計値	Input Voltage (Minimum)	V _{IN(Min)}	9.0	V	OK			
	Input Voltage	V _{IN}	12.0	V	-	3.5V to 40V		
	Input Voltage (Maximum)	$V_{IN(Max)}$	16.0	V	OK	1		
Desigin parameters	Output Voltage	V _{OUT_Target}	5.00	V	OK	0.8V to 8.5V		
	SW minimum OFF time	t _{OFFMIN}	130	ns	-	VREG = 3.3V		
	Maximum load current during startup	I _{OUT_Start(Max)}	0.50	Α	-			
	Output Current	lout	1.00	Α	-	OCP_SEL = H		
計算結果	Output voltage	V _{OUT}	6.00	V	OK	1.92	≦V _{out} ≦	6.192
Calculation Results	Output Inductor	L ₁	4.70	μН	OK	4.7μH to 15μH		
	Inductor ripple current	ΔI _L	0.36	Α	-			
	Output ripple voltage	$\Delta V_{p,p}$	1.33	mV	-			
	Cout capacitance	C _{OUT}	44.00	μF	OK	C _{out} ≧	44.00	μF
	Minimum C _{OUT} capacitance	C _{OUT_WORST}	44.00	μF	OK	C _{OUT_WORST} ≧	18.17	μF
	Maximum C _{OUT} capacitance	C _{OUT(Max)}	260.42	μF	OK	C _{OUT(Max)} ≧	44.00	μF
	RMS value of ripple current	I _{COUT(RMS)}	0.10	Α	OK	I _{COUT(RMS)} <	1.00	Α
	Input ripple current (RMS)	I _{CIN(RMS)}	0.51	Α	-			

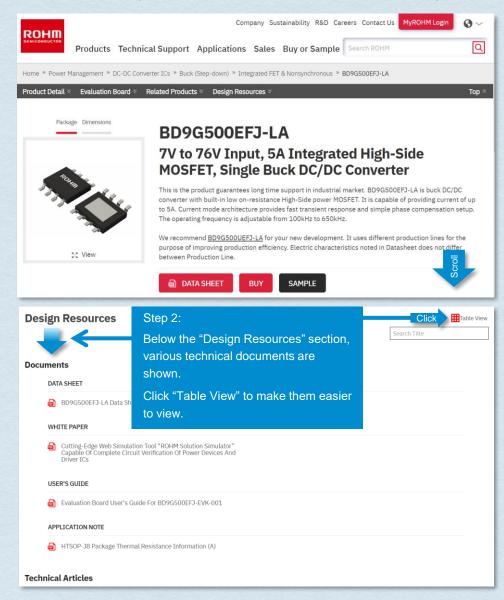
*1 The results of theoretical calculations with ideal parts may not match the part values in the recommended parts list (or the simulation results).

The results of the theoretical calculations are temporary values. The component values must be adjusted by evaluation of the actual board to determine the final value. 理題的な部品を用いた理論計算の結果は、推奨部品リストの部品値(またはシミュレーション結果)と一致しない場合があります。

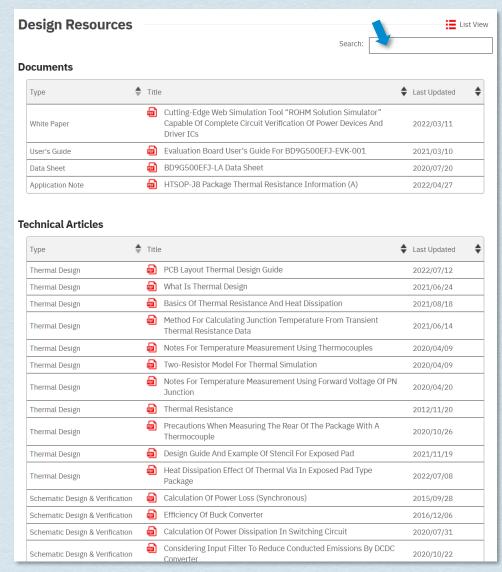
理論計算の結果は仮の値です。最終的な値を決定するには、実際の基板の評価で部品値を調整する必要があります。

Back

Application Note

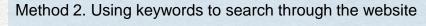

Page 1/2

How to obtain application notes (various technical documents)


Obtain through one of the following methods:

Method 1. Find application notes on the product page

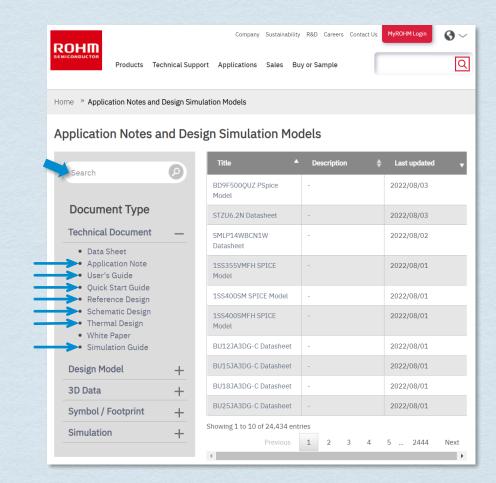
Step 1: Display the product page of the product name you want and scroll down the page.



Step 3: The "Documents" section shows documents highly relevant to this product name. The "Technical Articles" section shows documents related to this product name. With the "Search" feature on the upper right of the display, you can easily search for document titles.

Previous page

Page 2/2



Step 1: From the home page, access the document search page.

Step 2: Entering a keyword into the "Search" area on the left side of the screen displays the results in a window on the right. Do not confuse the area with the search field on the upper right of the display. With the default setting, all documents and design models including data sheets are targets of the search. As a result, many unnecessary results may be displayed, hiding necessary information.

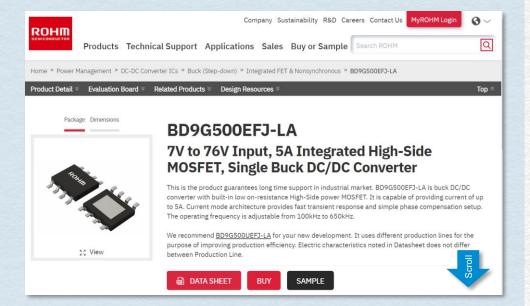
In such a case, select the type of documents in the list on the left. This displays filtered results. In case of application notes, they may be contained in different categories, such as Schematic Design or Thermal Design. Select the categories sequentially.

The design models include the following. Different models are provided depending on the product names.

How to obtain design models

Electrical simulation models for IC

- PSpice Model: encrypted model file for PSpice.
- Unencrypted SPICE Model: unencrypted model file.
- Spice Modeling Report: modeling report for models listed above.

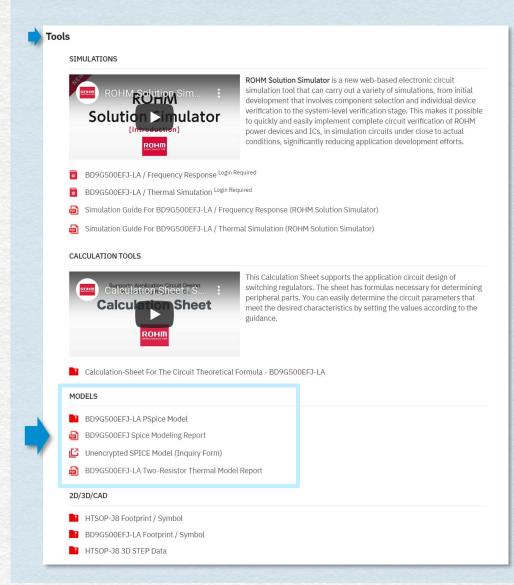

Electrical simulation models for discrete devices

- SPICE Model: unencrypted model file.
- SPICE Thermal Model: thermal model to be used by electrical simulators.
- PLECS Model: model file for PLECS.

For thermal simulations

Tow-Resistor Model Report: document describing the values of the two-resistor model.

Step 1: Display the product page of the product name you want and scroll down the page.

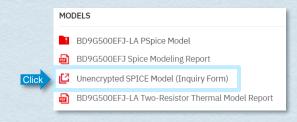


A

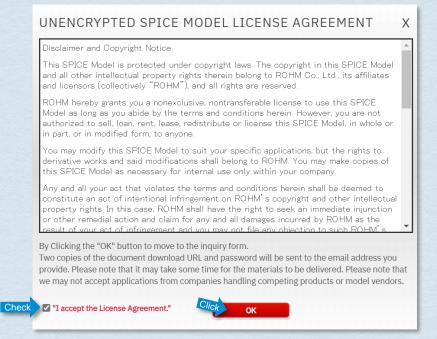
Design Model

Page 1/2

Step 2: "MODELS" is located below the "Tools" section. Models for electrical and thermal simulations are provided. Click the necessary items to download them.


Design Model Previous page

Page 2/2


How to obtain design models (continued)

How to obtain Unencrypted SPICE Model

Step 1: Click "Unencrypted SPICE Model (Inquiry Form)".

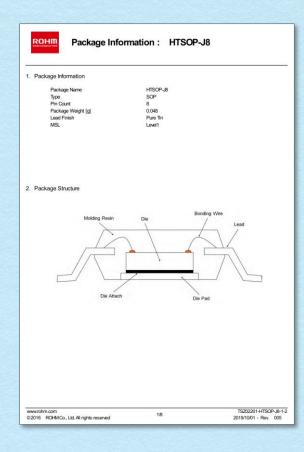
Step 2: Read the licensing agreement. If you accept, check "I accept the License Agreement." and click the [OK] button.

Step 3: When the "Contact us" form is displayed, enter the required details and click the [Submit] button.

ROHM Conta	ct us	
	r interest in ROHM. Please fill in the following information and a will contact you to answer your questions and provide the informatio	n you
the form below - ROHM will us sharing some i	mation must be handled according to the ROHM's privacy policy. Your data entry should be considered that you read and agreed with the ROHM's privacy policy. The information you provide for legitimate business purposes which may include information with related companies in the ROHM group and ROHM's distributors, es representatives. Your data entry to the form below should be considered that	e
		ed Fields
Last Con Dep	name name pany Please type your full company name. Do not abbreviate. artment il address *	
Pho Cou Part	Please enter your company email address. ne Number *	
	Journe	

Step 4: The URL and password for download are sent to the email address entered. Follow the procedure described in the email to obtain the SPICE Model.

Back


Package Information

Page 1 / 1

How to obtain package information

The package information contains the following details.

- Package Structure
- Packing Specification
- Footprint dimensions
- Marking Specification
- Storage conditions
- Soldering conditions

Step 1: Display the product page of the product name you want. Clicking the package name displays the package information. Company Sustainability R&D Careers Contact Us MyROHM Login ROHM Q Products Technical Support Applications Sales Buy or Sample Search ROHM Home » Power Management » DC-DC Converter ICs » Buck (Step-down) » Integrated FET & Nonsynchronous » BD9G341AEFJ Top ≈ Related Products > Design Resources Package Dimensions BD9G341AEFJ 1ch Buck Converter Integrated FET The BD9G341AEFJ is a buck switching regulator with integrated $150m\Omega$ power MOSFET. Current mode architecture provides fast transient response and a simple phase compensation setup. The operating frequency is programmable from 50kHz to 750kHz. Additional protection features are included such as Over Current Protection, Thermal shutdown and Under voltage lockout. The under voltage lockout and hysteresis can be set by external resistor. * This is a standard-grade product. DATA SHEET SAMPLE * For Automotive usage, please contact Sales. 55 View Documents ✓ Tools ✓ Packaging & Quality ✓ FAQs

Status Recommended

Integrated FET

Minimum Package Quantity 2500

Package HTSOP-J8

Packing Type Taping

· Wide input voltage range from 12V to 76V.

Variable frequency from 50kHz to 750kHz

Integrated 80V/3.5A/150mΩ NchFET.

FEATURES:

· Current mode.

Product Detail

Unit Quantity 2500

SPECIFICATIONS:

Integrated FET / Controller

RoHS Yes

Topology

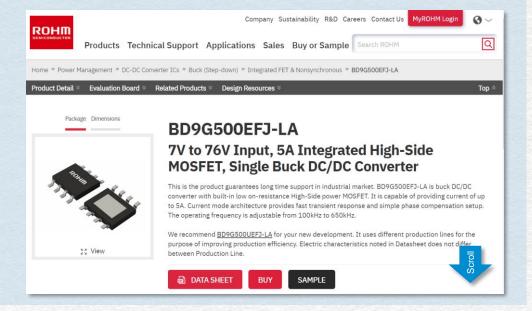
Part Number BD9G341AEFJ-E2

PCB Library

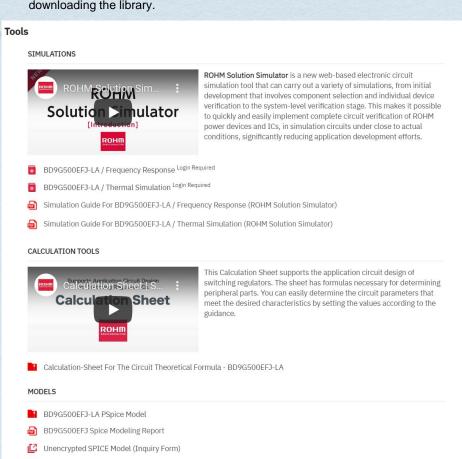
How to obtain PCB library data

The PCB library data (.bxl file) is neutral CAD data independent of CAD tools.

You can import this file into Ultra Librarian® Free Reader and export symbols and footprints in a specific CAD tool format.


Ultra Librarian® Free Reader supports 30 types of CAD formats and more.

- Accel EDA 14 & 15
- Altium 6 to current version
- Autodesk Fusion 360
- Cadence Allegro
- DesignSpark
- Eagle Libraries
- KiCad
- Mentor Graphics
- BoardStation
- Mentor Graphics Design Architect


- Mentor Graphics Design
- Expedition 99 and 2000
- OrCAD 9.X PCB and Capture
- PADS PowerPCB 3, 3.5, 4.X, and 5.X
- PADS PowerPCB and PowerLogic 3.0
- PCAD 2000, 2001, 2002, 2004, and 2006
- Pulsonix 8.5 or newer
- STL

- 3D STEP
- TARGET 3001!
- View Logic ViewDraw
- Quadcept
- Zuken CadStar 3 and 4
- Zuken CR-5000 and CR-8000
- Zuken eCADSTAR 2020 and 2021

Step 2: "2D/3D/CAD" is located below "Tools". Clicking "Footprint /Symbol" starts downloading the library.

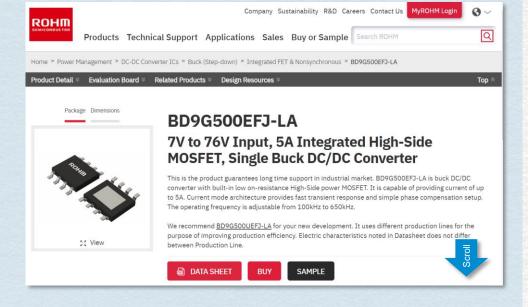
BD9G500EFJ-LA Two-Resistor Thermal Model Report

2D/3D/CAD

HTSOP-J8 Footprint / Symbol

BD9G500EFJ-LA Footprint / Symbol
HTSOP-J8 3D STEP Data

Back


3D Model

Page 1/1

How to obtain 3D models

The 3D package model data representing the 3D outline images of electronic components is provided as a STEP (Standard for the Exchange of Product data) file. The STEP files comply with the international standard, ISO 10303. They can be imported into many CAD systems. In addition, they are saved in the text format so that various CAD systems can interpret them. The data published on the website are outline models in which internal structures cannot be viewed.

Step 1: Display the product page of the product name you want and scroll down the page.

© 2022-2023 ROHM Co., Ltd

Step 2: "2D/3D/CAD" is located below "Tools". Clicking "3D STEP Data" starts downloading the model.

- BD9G500EFJ-LA / Frequency Response Login Required
- BD9G500EFJ-LA / Thermal Simulation Login Required
- Simulation Guide For BD9G500EFJ-LA / Frequency Response (ROHM Solution Simulator)
- Simulation Guide For BD9G500EFJ-LA / Thermal Simulation (ROHM Solution Simulator)

CALCULATION TOOLS

This Calculation Sheet supports the application circuit design of switching regulators. The sheet has formulas necessary for determining peripheral parts. You can easily determine the circuit parameters that meet the desired characteristics by setting the values according to the guidance.

power devices and ICs, in simulation circuits under close to actual conditions, significantly reducing application development efforts.

Calculation-Sheet For The Circuit Theoretical Formula - BD9G500EFJ-LA

MODELS

- BD9G500EFJ-LA PSpice Model
- BD9G500EFJ Spice Modeling Report
- Unencrypted SPICE Model (Inquiry Form)
- BD9G500EFJ-LA Two-Resistor Thermal Model Report

2D/3D/CAD

- HTSOP-J8 Footprint / Symbol
- BD9G500EFJ-LA Footprint / Symbol
- HTSOP-J8 3D STEP Data

Catalog

ROHM Solution Simulator

Page 1/3

Switching Regulator ICs : Automotive

					Simulation Circuit			
Part number	I _{оит} [А]	V _{IN} [V]	V _{OUT} [V]	Package	Frequency Response	Start Up	Load Response	Line Response
BD9P105EFV-C			0.8 to 8.5	HTSSOP-B20	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P105MUF-C			0.6 10 6.5	VQFN20FV4040	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P135EFV-C	1	3.5 to 40	3.3	HTSSOP-B20	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P135MUF-C	'	3.3 10 40	3.3	VQFN20FV4040	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P155EFV-C			5.0	HTSSOP-B20	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P155MUF-C			5.0	VQFN20FV4040	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P205EFV-C			0.8 to 8.5	HTSSOP-B20	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P205MUF-C			0.0 10 0.5	VQFN20FV4040	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P235EFV-C	2	3.5 to 40	3.3	HTSSOP-B20	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P235MUF-C	2	3.5 10 40	3.3	VQFN20FV4040	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P255EFV-C			5.0	HTSSOP-B20	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9P255MUF-C				VQFN20FV4040	<u>Online</u>	-	<u>Online</u>	<u>Online</u>
BD9S200MUF-C	2			VQFN16FV3030	<u>Online</u>	-	-	-
BD9S300MUF-C	3	2.7 to 5.5	0.8 to 4.4	VQFN16FV3030	<u>Online</u>	-	-	-
BD9S400MUF-C	4			VQFN16FV3030	<u>Online</u>	-	-	-
BD9S201NUX-C	2	2.7 to 5.5	0.8 to 5.5	VSON008X2020	<u>Online</u>	-	-	-
BD9G401EFJ-M	3.5	4.5 to 42	0.8 to 42	HTSOP-J8ES	<u>Online</u>	-	-	-
BD8P250MUF-C	2	3.5 to 36	5.0	VQFN24FV4040	<u>Online</u>	-	-	-
BD90610EFJ-C	1.25			HTSOP-J8	<u>Online</u>	<u>Online</u>	-	-
BD90620EFJ-C	2.5			HTSOP-J8	<u>Online</u>	<u>Online</u>	-	-
BD90620HFP-C	2.5	3.5 to 36	0.8 to 36	HRP7	<u>Online</u>	<u>Online</u>	-	-
BD90640EFJ-C	4			HTSOP-J8	<u>Online</u>	<u>Online</u>	-	-
BD90640HFP-C	4			HRP7	<u>Online</u>	<u>Online</u>	-	-
BD8P250MUF-C + BD90302NUF-C	2	2.7 to 36	5.0	VQFN24FV4040 + VSON10FV3030	<u>Online</u>	-	-	-

Information

For the latest lineup of simulation circuits, check our website.

Previous page

Page 2/3

Simulation Circuit (Continued)

Select a circuit to be simulated

Switching Regulator ICs: Industrial

			V _{OUT} [V]		Simulation Circuit						
Part number	I _{оит} [А]	V _{IN} [V]		Package	Frequency Response	Start Up	Load Response	Line Response	Thermal		
BD9A201FP4-LBZ	2	2.7 to 5.5	0.8 to 3.85	TSOT23-8L	<u>Online</u>	-	-	-	-		
BD9E100FJ-LB	1			SOP-J8	<u>Online</u>	-	-	-	-		
BD9E101FJ-LB	'		1.0 to 25.2	3UP-J0	<u>Online</u>	-	-	-	-		
BD9E300EFJ-LB	2.5	7.0 to 36	1.0 to 25.2	HTSOP-J8	<u>Online</u>	-	-	-	-		
BD9E301EFJ-LB	2.5	2.5	2.5			H150P-J6	<u>Online</u>	-	-	-	-
BD9E303EFJ-LB	3		1.0 to 28.8	HTSOP-J8	<u>Online</u>	-	-	-	-		
BD9E304FP4-LBZ	3	4.5 to 36	0.7 to 28	TSOT23-8L	<u>Online</u>	-	-	-	-		
BD9G102G-LB	0.5	6 to 42	0.75 to 33.6	SSOP6	<u>Online</u>	-	-	-	-		
BD9G201EFJ-LB	1.5	4.5 to 42	0.8 to 42	HTSOP-J8ES	<u>Online</u>	-	-	-	-		
BD9G341AEFJ-LB	3	12 to 76	1.0 to 76	HTSOP-J8	<u>Online</u>	-	<u>Online</u>	<u>Online</u>	-		
BD9G500EFJ-LA	5	7.0 to 76	1.0 to 68.4	HTSOP-J8	<u>Online</u>	-	-	-	<u>Online</u>		

Switching Regulator ICs: Standards

			V _{OUT} [V]		Simulation Circuit				
Part number	I _{ОUТ} [А]	V _{IN} [V]		Package	Frequency Response	Start Up	Load Response	Line Response	
BD9A300MUV	3	2.7 to 5.5	0.8 to 3.85	VQFN016V3030	<u>Online</u>	-	-	-	
BD9D300MUV	3	4 to 17	0.9 to 5.25	VQFN016V3030	<u>Online</u>	-	-	-	
BD9E104FJ	1	7.0 to 26	1.0 to 13	SOP-J8	<u>Online</u>	-	-	-	
BD9E200FP4-Z	2	4.5 26	0.7 to 20.8	TSOT23-6L	<u>Online</u>	-	<u>Online</u>	-	
BD9E201FP4-Z	2	4.5 28	0.7 to 22	TSOT23-6L	<u>Online</u>	-	<u>Online</u>	-	
BD9E302EFJ	3	7.0 to 28	1.0 to 19.6	HTSOP-J8	<u>Online</u>	-	-	-	
BD9F500QUZ	5	4.5 to 36	0.6 to 14	VMMP16LZ3030	<u>Online</u>				
BD9F800MUX-Z	8	4.5 to 28	0.765 to 13.5	VQFN11X3535A	<u>Online</u>	-	-	-	

Information

For the latest lineup of simulation circuits, check our website.

© 2022-2023 ROHM Co., Ltd.

Previous page

Page 3/3

Simulation Circuit (Continued)

Select a circuit to be simulated

Linear Regulators : Automotive

					Simulation Circuit			
Part number	I _{оит} [А]	V _{IN} [V]	V _{OUT} [V]	Package	Load Response	Line Response	Thermal	
BD433M2EFJ-C	0.2	3.9 to 42		HTSOP-J8	<u>Online</u>	<u>Online</u>	<u>Online</u>	
BD433M2FP3-C	0.2	3.9 10 42	3.3	SOT223-4F	<u>Online</u>	<u>Online</u>	-	
BD433M5FP-C	0.5	4.0 to 42	3.3	TO252-3	<u>Online</u>	<u>Online</u>	Online	
BD433M5FP2-C	0.5	4.0 10 42		TO263-3	<u>Online</u>	<u>Online</u>	<u>Online</u>	
BD450M2EFJ-C	0.2	5.5 to 42		HTSOP-J8	<u>Online</u>	<u>Online</u>	<u>Online</u>	
BD450M2FP3-C	0.2	5.5 (0 42	5.0	SOT223-4F	<u>Online</u>	<u>Online</u>	-	
BD450M5FP-C	0.5	5.5 to 42	5.0	TO252-3	<u>Online</u>	<u>Online</u>	<u>Online</u>	
BD450M5FP2-C	0.5	5.5 (0 42		TO263-3	<u>Online</u>	<u>Online</u>	<u>Online</u>	
BD733L2EFJ-C	0.2	4.37 to 45	3.3	HTSOP-J8	<u>Online</u>	<u>Online</u>	-	
BD733L5FP-C	0.5	4.17 to 45	3.3	TO252-3	<u>Online</u>	<u>Online</u>	-	
BD750L2EFJ-C	0.2	5.8 to 45	5.0	HTSOP-J8	<u>Online</u>	<u>Online</u>	-	
BD750L5FP-C	0.5	5.6 to 45	5.0	TO252-3	<u>Online</u>	<u>Online</u>	-	
BD933N1G-C				SSOP5	<u>Online</u>	<u>Online</u>	-	
BD933N1WG-C		4.5 to 42	3.3		<u>Online</u>	<u>Online</u>	-	
BD933N1EFJ-C		4.5 10 42	3.3	HTSOP-J8	<u>Online</u>	<u>Online</u>	-	
BD933N1WEFJ-C	0.15			11130F-30	<u>Online</u>	<u>Online</u>	-	
BD950N1G-C	0.15			SSOP5	<u>Online</u>	<u>Online</u>	-	
BD950N1WG-C		6.0 to 42	5.0	330F3	<u>Online</u>	<u>Online</u>	-	
BD950N1EFJ-C		0.0 10 42	5.0	LITCOD 10	<u>Online</u>	<u>Online</u>	-	
BD950N1WEFJ-C				HTSOP-J8	<u>Online</u>	<u>Online</u>	-	
BD00C0AWFP-C	1	4.0 to 26.5	1.0 to 15	TO252-5	<u>Online</u>	<u>Online</u>	-	
BD80C0AWFP-C	1	4.0 10 20.3	8.0	10232-3	<u>Online</u>	<u>Online</u>	-	

Information

For the latest lineup of simulation circuits, check our website.

Page 1 / 7

Application Note

A. Linear Regulators

A-1. Circuit Design

Online Browsing	Title			
[EN] [JP] [CN] [KR]	Basics of Linear Regulators			
[EN] [JP] [CN]	Linear Regulator Specifications			
[EN] [JP]	Table of resistance for output voltage setting on linear regulator ICs			
[EN] [JP]	Reverse Voltage Protection			
[EN] [JP]	Power Source ON/OFF Characteristics for Linear Regulator			
[EN] [JP]	Connecting LDOs in Parallel			
[EN] [JP]	Problem Situations: Power Supply Does Not Start			
[EN] [JP]	BAxxCC0 Series Circuit Using a Ceramic Output Capacitor			
[EN] [JP]	Suppression Method of Switching Noise Using Linear Regulator and Low Pass Filter			
[EN] [JP] [CN] [KR]	Impedance Characteristics of Bypass Capacitor			

A-2. Simulation

Online Browsing	Title
[EN] [JP]	Usage of SPICE MacroModel (for LDO)

Information

For new titles, check the product pages and the document search page.

A-3. Thermal Design

Online Browsing	Title
[EN] [JP] [CN]	What Is Thermal Design?
[EN] [JP] [CN]	Basics of Thermal Resistance and Heat Dissipation
[EN] [JP] [CN] [KR]	Thermal resistance and thermal characterization parameter
[EN] [JP] [CN]	θ_{JA} and Ψ_{JT}
[EN] [JP] [CN]	θ_{JC} and Ψ_{JT}
[EN] [JP] [CN]	How to Use the Thermal Resistance and Thermal Characteristics Parameters
[EN] [JP] [CN]	Judgment Criteria of Thermal Evaluation
[EN] [JP]	Thermal Design for Three-Terminal Voltage Regulators
[EN] [JP]	Thermal Calculation for Linear Regulator
[EN] [JP] [CN]	Two-Resistor Model for Thermal Simulation
[EN] [JP] [CN]	Method for Calculating Junction Temperature from Transient Thermal Resistance Data
[EN] [JP] [CN]	Calculating Junction Temperature from Inrush Current
[EN] [JP] [CN]	TO252 Package Thermal Resistance Information
[EN] [JP] [CN]	HTSOP-J8 Package Thermal Resistance Information
[EN] [JP]	Thermal Resistance Data: TO220CP-V5
[EN][JP]	Thermal Resistance Data: TO263-5 (BD4xxM5WFP2-C)
[EN] [JP]	Thermal Resistance Data: SSOP5 (BUxxJA2DC-C, VG-C)
[EN] [JP]	Thermal Resistance Data: SSOP5 (BUxxJA3DC-C)
[EN] [JP]	Thermal Resistance Data: SSOP5 (BUxxTD3WG)
[EN] [JP]	Thermal Resistance Data: SSOP5 (BD7xxL05G-C)
[EN] [JP]	Thermal Resistance Data: SSOP5 (BD9xxN1G-C)
[EN] [JP]	Thermal Resistance Data: VSON008X2030 (BDxxGA3WNUX)
[EN] [JP]	Thermal Resistance Data: HVSOF6 (BD00IA5MHFV-M)
[EN] [JP]	Thermal Resistance Data: SSON004X1010 (BUxxTD2WNVX)

A-4. Design Data

	Part number	Application Information Provides hints for IC mounting	Reference Circuit	Dropout Voltage Design reference values	Typical Performance Curves	PCB Layout
	BA178xx series	[EN] [JP]	-	[EN] [JP]	[EN] [JP]	(EVI) (ID)
	BA178Mxx series	[EN] [JP]	-	[EN] [JP]	[EN] [JP]	[EN] [JP]
	BA1117 series	[EN] [JP]	-	[EN] [JP]	-	[EN] [JP]
ВА	BAxxBC0 series	[EN] [JP]	-	[EN] [JP]	[EN] [JP]	
	BAxxCC0 series	[EN] [JP]	-	[EN] [JP]	[EN] [JP]	[EN] [JP]
	BAxxDD0 series	[EN] [JP]	-	[EN] [JP]	[EN] [JP]	[EN] [JP]
	BAxxJC5 series	-	-	[EN] [JP]	-	
	BDxxGC0 series	[EN] [JP]	[EN] [JP]	[EN] [JP]	-	
	BDxxGA5 series	[EN] [JP]	[EN] [JP]	[EN] [JP]	-	
	BDxxGA3 series	[EN] [JP]	[EN] [JP]	[EN] [JP]	-	
	BDxxHC5 series	[EN] [JP]	[EN] [JP]	[EN] [JP]	-	
	BDxxHC0 series	[EN] [JP]	[EN] [JP]	[EN] [JP]	-	[EN] [JP]
	BDxxHA5 series	[EN] [JP]	[EN] [JP]	[EN] [JP]	-	
BD	BDxxHA3 series	[EN] [JP]	[EN] [JP]	[EN] [JP]	-	
סט	BDxxIC0 series	[EN] [JP]	[EN] [JP]	[EN] [JP]	-	
	BDxxIA5 series	[EN] [JP]	[EN] [JP]	[EN] [JP]	-	
	BDxxKA5 series	[EN] [JP]	[EN] [JP]	[EN] [JP]	-	[EN] [JP]
	BD00D0A series	-	-	[EN] [JP]	-	-
	BD00EA5 series	-	-	[EN] [JP]	-	-
	BDxxFC0 series	-	[EN] [JP]	[EN] [JP]	-	[EN] [JP]
	BDxxFD0 series	-	-	[EN] [JP]	-	-

For new titles, check the product pages and the document search page.

© 2022-2023 ROHM Co., Ltd.

A-4. Design Data (Continued)

	Part number	Application Information Provides hints for IC mounting	Reference Circuit	Dropout Voltage Design reference values	Typical Performance Curves	PCB Layout
	BDxxC0A series	-	[EN] [JP]	-	-	(ENILID)
	BDxxD0A series	-	[EN] [JP]	-	-	[EN] [JP]
BD	BDxxFA1MG-M series	[EN] [JP]	-	[EN] [JP]	-	(ENLLID)
	BDxxFA1FP3 series	[EN] [JP]	-	[EN] [JP]	-	[EN] [JP]
	BD35395FJ	-	-	-	-	[EN] [JP]
	BUxxJA2MNVX-C series	-	-	[EN] [JP]	-	[EN] [JP]
	BUxxJA2DG,VG series	-	-	[EN] [JP]	-	-
	BUxxTD2 series	-	-	[EN] [JP]	-	[EN] [JP]
	BUxxTD3 series	[EN] [JP]	-	[EN] [JP]	-	[EN] [JP]
BU	BUxxSA4 series	-	-	[EN] [JP]	-	[EN] [JP]
	BUxxSA5 series	-	-	[EN] [JP]	-	[EN] [JP]
	BUxxTA2 series	-	-	[EN] [JP]	-	[EN] [JP]
	BUxxSD2 series	-	-	[EN] [JP]	-	[EN] [JP]
	BUxxSD5 series	-	-	[EN] [JP]	-	[EN] [JP]
	BHxxM0A series	-	-	-	-	[EN] [JP]
	BHxxMA3 series	-	-	-	-	[EN] [JP]
ВН	BHxxNB1 series	-	-	-	-	[EN] [JP]
ы	BHxxPB1 series	-	-	-	-	[EN] [JP]
	BHxxRB1 series	-	-	-	-	[EN] [JP]
	BHxxSA3 series		<u>-</u>		-	[EN] [JP]

For new titles, check the product pages and the document search page.

© 2022-2023 ROHM Co., Ltd.

A. Linear Regulators (Continued)

A-5. PCB Design

Online Browsing	Title
[EN] [JP] [CN]	Design Guide and Example of Stencil for Exposed Pad
[EN] [JP] [CN]	PCB Layout Thermal Design Guide
[EN] [JP] [CN]	Heat Dissipation Effect of Thermal Via in Exposed Pad Type Package

A-6. Evaluation

Online Browsing	Title
[EN] [JP]	Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)
[EN] [JP]	Simple Test Method for Estimating the Stability of Linear Regulators
[EN] [JP]	Problem Situations: Power Supply Does Not Start

A-7. Thermal Measurement

Online Browsing	Title
[EN] [JP]	Notes for Temperature Measurement Using Thermocouples
[EN] [JP]	Notes for Temperature Measurement Using Forward Voltage of PN Junction
[EN] [JP] [CN] [KR]	Precautions When Measuring the Rear of the Package with a Thermocouple

Information

For new titles, check the product pages and the document search page.

B-1. Circuit Design

Online Browsing	Title
[EN] [JP] [CN]	Precautions When Measuring the Rear of the Package with a Thermocouple
[EN] [JP] [CN]	Capacitor Calculation for Buck converter IC
[EN] [JP] [CN]	The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit
[EN] [JP] [CN]	Calculation of Power Loss (Synchronous)
[EN] [JP] [CN]	Considerations for Power Inductors Used for Buck Converters
[EN] [JP] [CN]	Snubber Circuit for Buck Converter IC
[EN] [JP] [CN]	Efficiency of Buck Converter
[EN] [JP] [CN] [KR]	Phase Compensation Design for Current Mode Buck Converter
[EN] [JP]	Bootstrap Circuit in the Buck Converter
[EN] [JP] [CN]	Method for Determining Constants of Peripheral Parts of Buck DC/DC Converter
[EN] [JP] [CN]	Resistor Value Table to set Output Voltage of Buck Converter IC
[EN] [JP]	Power Supply Sequence Circuit with General Purpose Power Supply IC
[EN] [JP]	Suppression Method of Switching Noise Using Linear Regulator and Low Pass Filter
[EN] [JP] [CN] [KR]	Impedance Characteristics of Bypass Capacitor
[EN] [JP]	Types of Capacitors Used for Output Smoothing of Switching Regulators and their Precautions
[EN] [JP]	Design and Application Considerations of Input Filter to reduce Conducted Emissions caused by DC/DC converter
[EN]	Considerations for Power Inductors: How Flux Orientation Can Reduce Radiated Emission
[EN] [JP]	Diode Selection Method for Asynchronous Converter

B-2. Thermal Design

Online Browsing	Title
[EN] [JP] [CN]	What Is Thermal Design?
[EN] [JP] [CN]	Basics of Thermal Resistance and Heat Dissipation
[EN] [JP] [CN] [KR]	Thermal resistance and thermal characterization parameter
[EN] [JP] [CN]	θ_{JA} and Ψ_{JT}
[EN] [JP] [CN]	θ_{JC} and Ψ_{JT}
[EN] [JP] [CN]	How to Use the Thermal Resistance and Thermal Characteristics Parameters
[EN] [JP] [CN]	Judgment Criteria of Thermal Evaluation
[EN] [JP] [CN]	Two-Resistor Model for Thermal Simulation
[EN] [JP] [CN]	Method for Calculating Junction Temperature from Transient Thermal Resistance Data
[EN] [JP] [CN]	HTSOP-J8 Package Thermal Resistance Information
[EN] [JP] [CN]	TO252 Package Thermal Resistance Information

B-3. Simulation

Online Browsing	Title
[EN] [JP] [CN] [KR]	Usage of SPICE MacroModel (for DC/DC)

Information

For new titles, check the product pages and the document search page.

Application Note

B. Switching Regulator ICs (Continued)

B-4. Design Data

	Part number	Reference Circuit	PCB Layout
	BD9A100MUV	(ENILID)	(ENLLID)
	BD9A101MUV-LB	[EN] [JP]	
BD9Axxx	BD9A300MUV	(ENDLIN)	
series	BD9A301MUV-LB	[EN] [JP]	[EN] [JP]
	BD9A400MUV	[EN] [JP]	
	BD9A600MUV	[EN] [JP]	
	BD9B100MUV	[EN] [JP]	
	BD9B200MUV	[EN] [JP]	
	BD9B300MUV	(ENDLIE)	[EN] [JP]
BD9Bxxx series	BD9B301MUV	[EN] [JP]	
	BD9B400MUV	[EN] [JP]	
	BD9B500MUV	[EN] [JP]	
	BD9B600MUV	[EN] [JP]	
	BD9C301FJ	[EN] [JP]	
BD9Cxxx	BD9C401EFJ	[EN] [JP]	[EN] [JP]
series	BD9C501EFJ	[EN] [JP]	[EIN] [DE]
	BD9C601EFJ	[EN] [JP]	
BD9Dxxx	BD9D320EFJ	[EN] [JP]	[EN] [JP]
series	BD9D321EFJ	[EN] [JP]	[EIN] [DE]

	Part number	Reference Circuit	PCB Layout
	BD9E100FJ	[EN] [JP]	
	BD9E101FJ	[EN] [JP]	[EN] [JP]
	BD9E104FJ	-	
BD9Exxx series	BD9E300EFJ	[EN] [JP]	(ENLLID)
	BD9E301EFJ	[EN] [JP]	[EN] [JP]
	BD9E302EFJ	[EN] [JP]	-
	BD9E303EFJ	[EN] [JP]	[EN] [JP]
BD9Fxxx	BD9F800MUX	[EN] [JP]	-
series			
	BD9G101G	[EN] [JP]	-
BD9Gxxx	BD9G201EFJ-M	[EN] [JP]	-
series	BD9G341AEFJ	[EN] [JP]	-
	BD9G401EFJ-M	[EN] [JP]	-
	BD9106FVM	[EN] [JP]	-
	BD9130NV	[EN] [JP]	-
	BD9137MUV	[EN] [JP]	-
	BD9139MUV	[EN] [JP]	-
	BD9141MUV	[EN] [JP]	-
others	BD9611MUV	[EN] [JP]	-
others	BD9851EFV	[EN] [JP]	-
	BD70522GUL	[EN] [JP]	-
	BD95821NUV	[EN] [JP]	=
	BD95831NUV	[EN] [JP]	-
	BD95841NUV	[EN] [JP]	=
	BD95861NUV	[EN] [JP]	-
Buck DC/DC Converter Recommended Inductor List		[EN] [JP]	

For new titles, check the product pages and the document search page.

Application Note

B. Switching Regulator ICs (Continued)

B-5. PCB Design

Online Browsing	Title
[EN] [JP] [CN] [KR]	PCB Layout Techniques of Buck Converter
[JP]	PCB Layout Techniques of Boost Converter
[EN] [JP] [CN]	Design Guide and Example of Stencil for Exposed Pad
[EN] [JP] [CN]	PCB Layout Thermal Design Guide
[EN] [JP] [CN]	Heat Dissipation Effect of Thermal Via in Exposed Pad Type Package

B-6. Evaluation

Online Browsing	Title
[EN] [JP]	Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)
[EN] [JP] [CN]	Method for Monitoring Switching Waveform
[EN] [JP] [CN] [KR]	Calculation of Power Dissipation in Switching Circuit
[EN] [JP] [CN] [KR]	Calculating Power Loss from Measured Waveforms
[EN] [JP] [CN] [KR]	Importance of Probe Calibration When Measuring Power: Deskew

B-7. Thermal Measurement

Online Browsing	Title
[EN] [JP]	Notes for Temperature Measurement Using Thermocouples
[EN] [JP]	Notes for Temperature Measurement Using Forward Voltage of PN Junction
[EN] [JP] [CN] [KR]	Precautions When Measuring the Rear of the Package with a Thermocouple

Application Note

C. Power Devices

C-1. Simulation

Online Browsing	Title
[EN] [JP]	How to Create Symbols for PSpice Models
[EN] [JP]	How to Use LTspice Models
[EN] [JP]	How to Use LTspice Models: Tips for Improving Convergence
[EN] [JP] [CN] [KR]	What is a Thermal Model?
[EN] [JP] [CN] [KR]	How to Use Thermal Models

C-2. Thermal Design

Online Browsing	Title
[EN] [JP] [CN]	Notes for Calculating Power Consumption: Static Operation
[EN] [JP] [CN]	Example of Heat Dissipation Design for TO Packages: Effect of Heat Dissipation Materials
[EN] [JP] [CN]	Precautions for Thermal Resistance of Insulation Sheet

C-3. Thermal Measurement

Online Browsing	Title
[EN] [JP] [CN] [KR]	Measurement Method and Usage of Thermal Resistance RthJC

Information

For new titles, check the product pages and the document search page.

Notes

- 1) The information contained in this document is current as of March 14th, 2023.
- 2) The information contained herein is subject to change without notice.
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 9) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrant that such information is error-free and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office as listed below. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Electronics for the Future